Torch的索引与形变
>>> a = torch.Tensor([[1,2],[3,4]])
>>> a
tensor([[1., 2.],
[3., 4.]])
>>> a[1] 类似python中的列表的取值
tensor([3., 4.])
>>> a[0]
tensor([1., 2.])
>>> a > 0 返回布尔值或者0,1
tensor([[True, True],
[True, True]])
>>> a = torch.Tensor([[0,2],[3,4]])
>>> a > 0
tensor([[False, True],
[ True, True]])
>>> a[a>0] 类似于列表
tensor([2., 3., 4.])
>>> torch.nonzero(a) 返回非0的坐标
tensor([[0, 1],
[1, 0],
[1, 1]])
>>> torch.full_like(a,1) 将a中的值全部为1
tensor([[1., 1.],
[1., 1.]])
>>> torch.where(a>1,torch.full_like(a,1),a) 条件判断 条件成立则为前者,条件不成立则为后者
tensor([[0., 1.],
[1., 1.]])
>>> a.clamp(1,6) 限制最小值为1,最大值为6
tensor([[1., 2.],
[3., 4.]])
Tensor的变形
>>> b = a.resize(2,2)
>>> b
tensor([[1, 2],
[3, 4]])
>>> b = a.reshape(2,2)
>>> b
tensor([[1, 2],
[3, 4]])
>>> b = a.reshape(1,4)
>>> b
tensor([[1, 2, 3, 4]])
>>> b = a.resize_(2,7)
>>> b
tensor([[ 1, 2, 3,
4, 25896191785238631, 27866512327901300,
32932988893003880],
[32088589733920884, 26740517931057249, 27866495148425318,
30962724186423412, 26740530815434867, 32651548277211241,
31525394966315103]])
>>> b = a.resize_(1,2) #a.resize_()可以直接改变Tensor的尺寸(在原地改变)如果超过原来尺寸则会重新分配内存,多出的部分置0,如果小于原来的Tensor大小则剩余的部分仍然会隐藏保留。
>>> b
tensor([[1, 2]])
#resize() reshape() view() 在括号中输入矩阵的尺寸可以直接修改 但不能超过原来的Tensor尺寸。。。
>>> a = torch.randn(2,2,3)
>>> a
tensor([[[ 1.9844, -1.1686, 0.1745],
[ 0.9595, 1.4640, -0.5703]],
[[-1.0130, -0.1706, 0.6245],
[ 0.7703, -1.0161, -0.1846]]])
>>> b = a.transpose(0,1)
>>> b
tensor([[[ 1.9844, -1.1686, 0.1745],
[-1.0130, -0.1706, 0.6245]],
[[ 0.9595, 1.4640, -0.5703],
[ 0.7703, -1.0161, -0.1846]]])
>>> a.permute(2,1,0)
tensor([[[ 1.9844, -1.0130],
[ 0.9595, 0.7703]],
[[-1.1686, -0.1706],
[ 1.4640, -1.0161]],
[[ 0.1745, 0.6245],
[-0.5703, -0.1846]]])
>>> a
tensor([[[ 1.9844, -1.1686, 0.1745],
[ 0.9595, 1.4640, -0.5703]],
[[-1.0130, -0.1706, 0.6245],
[ 0.7703, -1.0161, -0.1846]]])
>>>
squeeze()和 unsqueeze()来处理size为1的维度
expand()和 expend_as()来复制拓展size为1为指定维度大小。
##expand和repeat可以实现维度的拓展
expand拓展维度的时候,如果维度要是不想变化,就用-1代替,
而且拓张的时候只能从1扩张成M 不可从n拓张成M
>>> b.shape
torch.Size([1, 32, 1, 1])
>>> b.expand(4,-1,4,4).shape
torch.Size([4, 32, 4, 4])
repeat的使用
想重复几次就在repeat()中就重复的数不重复的话就是1
>>> b.shape
torch.Size([1, 32, 1, 1])
>>> b.repeat(1,1,4,4).shape
torch.Size([1, 32, 4, 4])
>>>
Torch的索引与形变的更多相关文章
- 常用torch代码片段合集
PyTorch常用代码段整理合集 本文代码基于 PyTorch 1.0 版本,需要用到以下包 import collections import os import shutil import tqd ...
- [转]Torch是什么?
Torch是一个广泛支持机器学习算法的科学计算框架.易于使用且高效,主要得益于一个简单的和快速的脚本语言LuaJIT,和底层的C / CUDA实现:Torch | Github 核心特征的总结:1. ...
- (原)torch中显示nn.Sequential()网络的详细情况
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6065526.html 本部分多试几次就可以弄得清每一层具体怎么访问了. step1. 网络定义如下: ...
- PyTorch官方中文文档:torch.nn
torch.nn Parameters class torch.nn.Parameter() 艾伯特(http://www.aibbt.com/)国内第一家人工智能门户,微信公众号:aibbtcom ...
- PyTorch官方中文文档:torch.Tensor
torch.Tensor torch.Tensor是一种包含单一数据类型元素的多维矩阵. Torch定义了七种CPU tensor类型和八种GPU tensor类型: Data tyoe CPU te ...
- PyTorch官方中文文档:torch
torch 包 torch 包含了多维张量的数据结构以及基于其上的多种数学操作.另外,它也提供了多种工具,其中一些可以更有效地对张量和任意类型进行序列化. 它有CUDA 的对应实现,可以在NVIDIA ...
- pytorch中文文档-torch.nn常用函数-待添加-明天继续
https://pytorch.org/docs/stable/nn.html 1)卷积层 class torch.nn.Conv2d(in_channels, out_channels, kerne ...
- Tensor索引操作
#Tensor索引操作 ''''' Tensor支持与numpy.ndarray类似的索引操作,语法上也类似 如无特殊说明,索引出来的结果与原tensor共享内存,即修改一个,另一个会跟着修改 ''' ...
- pytorch torch.Storage学习
tensor分为头信息区(Tensor)和存储区(Storage) 信息区主要保存着tensor的形状(size).步长(stride).数据类型(type)等信息,而真正的数据则保存成连续数组,存储 ...
随机推荐
- 嵌入式Servlet容器
配置嵌入式Servlet容器 ##Spring Boot里面内置了嵌入式的Servlet容器(tomcat) 点击pom.xml->右键->Diagrams->show Depend ...
- SpringMVC获取请求参数-POJO类型参数
1.Controller中的业务方法的POJO参数的属性名与请求参数一致,参数值会自动映射匹配 1.创建POJO类 public class User { private String usernam ...
- 如何满足一个前端对 Mock 的全部幻想
前端的痛苦 作为前端,最痛苦的是什么时候? 每个迭代,需求文档跟设计稿都出来了,静态页面唰唰两天就做完了.可是做前端又不是简单地把后端吐出来的数据放到页面上就完了,还有各种前端处理逻辑啊. 后端接 ...
- 【二进制枚举】【CF Div2 C】
2022.3.4 https://codeforces.com/contest/1646/problem/C 题意: 给一个数, 问可以最少有几个以下的数构成: 1.x! 2.2^x(x在每次都是任 ...
- Typora+PicGO+Gitee实现图床功能
Typora+PicGO+Gitee实现图床功能 版本 typora(0.9.86) PicGo(2.3.0) 主要参考链接 出现问题就先看看这个 问题一 打开PicGo后安装github插件会一直安 ...
- 2021.11.10 [POI2000]病毒(AC自动机)
2021.11.10 [POI2000]病毒(AC自动机) https://www.luogu.com.cn/problem/P2444 题意: 二进制病毒审查委员会最近发现了如下的规律:某些确定的二 ...
- XCTF练习题---MISC---功夫再高也怕菜刀
XCTF练习题---MISC---功夫再高也怕菜刀 flag:flag{3OpWdJ-JP6FzK-koCMAK-VkfWBq-75Un2z} 解题步骤: 1.观察题目,下载附件 2.下载到电脑后发现 ...
- 从零开始,开发一个 Web Office 套件(16):拖动控制点,调整编辑器大小
这是一个系列博客,最终目的是要做一个基于 HTML Canvas 的.类似于微软 Office 的 Web Office 套件(包括:文档.表格.幻灯片--等等). 博客园:<从零开始, 开发一 ...
- 【hexo博客搭建】本地搭建hexo博客(上)
前言 本篇文章会从本地(Windows 10)搭建-主题更换-部署阿里云详细步骤,如果在搭建过程中,遇到问题,可以通过博客页脚下的QQ联系我,或者在下面评论留言 一.本地搭建 1.安装前置 1.1安装 ...
- 探索ABP的EventHub解决方案
在上一章中,我们构建了一个简单的全栈 Web 应用程序,我们已经看到了使用 ABP 框架开发应用的典型流程,在接下来,我们将使用 ABP 框架创建更高级的应用程序. 给出具有现实世界复杂性的例子并不容 ...