UvaLive 6600 Spanning trees in a secure lock pattern 矩阵行列式
链接:https://icpcarchive.ecs.baylor.edu/index.php?
option=com_onlinejudge&Itemid=8&page=show_problem&problem=4611
题意:给一个N*N个点的矩阵(N<=6)。每一个点仅仅能和周围八个点相连,问有多少种生成树的方式。
思路:题里给的非常明确。就是列一个每一个点的边的矩阵,然后求子矩阵的行列式就能够了,由于N仅仅有6,所以打表就能够了。
打表代码:
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <ctype.h>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <vector>
#define eps 1e-8
#define INF 0x7fffffff
#define PI acos(-1.0)
#define seed 31//131,1313
typedef long long LL;
typedef unsigned long long ULL;
using namespace std;
#define MOD 1000
#define maxn 40
#define maxm 40
struct Matrix
{
int n,m;
double a[maxn][maxm];
void change(int c,int d)
{
n=c;
m=d;
for(int i=0; i<n; i++)
for(int j=0; j<m; j++)
a[i][j]=0;
}
void Copy(const Matrix &x)
{
n=x.n;
m=x.m;
for(int i=0; i<n; i++)
for(int j=0; j<m; j++)
a[i][j]=x.a[i][j];
}
void build(int n)
{
change(n*n,n*n);
for(int i=0; i<n*n; i++)
{
if(i%n!=0)
{
a[i][i-1]=-1;
a[i-1][i]=-1;
a[i][i]++;
a[i-1][i-1]++;
}
if(i%n!=0&&i/n!=0)
{
a[i][i-n-1]=-1;
a[i-n-1][i]=-1;
a[i][i]++;
a[i-n-1][i-n-1]++;
}
if(i%n!=0&&i/n!=n-1)
{
a[i][i+n-1]=-1;
a[i+n-1][i]=-1;
a[i][i]++;
a[i+n-1][i+n-1]++;
}
if(i/n!=n-1)
{
a[i][i+n]=-1;
a[i+n][i]=-1;
a[i][i]++;
a[i+n][i+n]++;
}
}
}
double det()
{
for(int i=1; i<n; i++)
{
for(int j=0; j<i; j++)
if(a[i][j]!=0)
{
for(int k=j+1; k<m; k++)
a[i][k]-=(a[j][k]*a[i][j]/a[j][j]);
a[i][j]=0;
}
}
double ans=1;
for(int i=0; i<n-1; i++)
ans*=a[i][i];
return ans;
}
};
int main()
{
int t;
scanf("%d",&t);
Matrix A;
A.build(t);
printf("%.0f\n",A.det());
return 0;
}
AC代码:
int main()
{
char ss[10][40]={"1","16","17745","1064918960","3271331573452806","504061943351319050000000"};
int T;
scanf("%d",&T);
while(T--)
{
int a;
scanf("%d",&a);
puts(ss[a-1]);
}
}
UvaLive 6600 Spanning trees in a secure lock pattern 矩阵行列式的更多相关文章
- 【2018 ICPC亚洲区域赛徐州站 A】Rikka with Minimum Spanning Trees(求最小生成树个数与总权值的乘积)
Hello everyone! I am your old friend Rikka. Welcome to Xuzhou. This is the first problem, which is a ...
- 多线程程序设计学习(7)read-write lock pattern
Read-Write Lock Pattern[读写]一:Read-Write Lock Pattern的参与者--->读写锁--->数据(共享资源)--->读线程--->写线 ...
- Cs Round#54 D Spanning Trees
题意:构造一张N个结点无重边.无自环的无向图.使得其最小生成树和最大生成树共享K条边. 样例一很具有启发性: 当K!=0时,我们可以先构造出一条链,链的长度为n-k的链,作为最小生成树的一部分,之后由 ...
- Minimum Spanning Trees
Kruskal’s algorithm always union the lightest link if two sets haven't been linked typedef struct { ...
- 【CodeChef EDGEST】Edges in Spanning Trees(树链剖分+树上启发式合并)
点此看题面 大致题意: 给你两棵\(n\)个点的树,对于第一棵树中的每条边\(e_1\),求存在多少条第二棵树中的边\(e_2\),使得第一棵树删掉\(e_1\)加上\(e_2\).第二棵树删掉\(e ...
- Gym102012A Rikka with Minimum Spanning Trees
题意 \(T\) 组数据,每组数据给定一个 \(n\) 个点,\(m\) 条边,可能含有重边自环的图,求出最小生成树的个数与边权和的乘积,对 \(10^9+7\) 取模. \(\texttt{Data ...
- 【C++设计模式】单件类与DCLP(Double Check Lock Pattern)的风险
[单件类] 保证只能有一个实例化对象,并提供全局的访问入口. [设计注意事项] 1.阻止所有实例化的方法: private 修饰构造函数,赋值构造函数,赋值拷贝函数. 2.定义单实例化对象的方法: a ...
- Android Lock Pattern 图案解锁
参考链接:http://www.cnblogs.com/dyingbleed/archive/2012/12/03/2800007.html http://blog.csdn.net/way_ping ...
- CF917D. Stranger Trees & TopCoder13369. TreeDistance(变元矩阵树定理+高斯消元)
题目链接 CF917D:https://codeforces.com/problemset/problem/917/D TopCoder13369:https://community.topcoder ...
随机推荐
- git远程仓库变更
查看自己的远程仓库 git remote -v 远程仓库变更 git remote remove origin //移出现有的远程仓库的地址 git remote add origin http:// ...
- BZOJ 2287 【POJ Challenge】消失之物(DP+容斥)
2287: [POJ Challenge]消失之物 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 986 Solved: 572[Submit][S ...
- luogu P2252 取石子游戏(威佐夫博弈)
题意 题解 对于像我这种不知道威佐夫博弈的人来说,拿到题就开始打表了. 然而打完后并没有发现什么. 然后才知道是威佐夫博弈. 结论是当(int)((b-a)*((sqrt(5.0)+1.0)/2.0) ...
- 《剑指Offer》——试题1:赋值运算符函数
题目:如下类型为CMyString的声明,请为该类型添加赋值运算符函数. class CMyString { public: CMyString(char* pData = NULL); CMyS ...
- java后台生成图片二维码
controller: /** * 获取登录的验证码 * @param request * @param response */ public void getLoginCode(HttpSessio ...
- vsftpd服务程序的三种认证模式
vsftpd服务程序的三种认证模式的配置方法——匿名开放模式.本地用户模式以及虚拟用户模式.了解PAM可插拔认证模块的原理.作用以及实战配置方法,通过实战课程进一步继续学习SELinux服务的配置方法 ...
- 紫书 习题 11-16 UVa 1669(树形dp)
想了很久, 以为是网络流最大流, 后来建模建不出来, 无奈. 后来看了 https://blog.csdn.net/hao_zong_yin/article/details/79441180 感觉思路 ...
- 题解 P3128 【[USACO15DEC]最大流Max Flow】
此类型题目有两种比较常见的做法:树链剖分和树上差分. 本题有多组修改一组询问,因此树上差分会比树链剖分优秀很多. 这里两种方法都进行介绍. 树链剖分和树上差分的本质都是将一颗树转换为一个区间,然后进行 ...
- Android 开发者不得不面对的六个问题
一份关于移动应用开发的调查报告显示,Androdid开发者对谷歌的移动操作系统平台的兴趣正在下降.尽管依然有79%的开发者表示对Android “非常感兴趣”,但调查报告显示,一些迹象表明在2012到 ...
- oracle树操作(select .. start with .. connect by .. prior)
oracle中的递归查询能够使用:select .. start with .. connect by .. prior 以下将会讲述oracle中树形查询的经常使用方式.仅仅涉及到一张表. star ...