UvaLive 6600 Spanning trees in a secure lock pattern 矩阵行列式
链接:https://icpcarchive.ecs.baylor.edu/index.php?
option=com_onlinejudge&Itemid=8&page=show_problem&problem=4611
题意:给一个N*N个点的矩阵(N<=6)。每一个点仅仅能和周围八个点相连,问有多少种生成树的方式。
思路:题里给的非常明确。就是列一个每一个点的边的矩阵,然后求子矩阵的行列式就能够了,由于N仅仅有6,所以打表就能够了。
打表代码:
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <ctype.h>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <vector>
#define eps 1e-8
#define INF 0x7fffffff
#define PI acos(-1.0)
#define seed 31//131,1313
typedef long long LL;
typedef unsigned long long ULL;
using namespace std;
#define MOD 1000
#define maxn 40
#define maxm 40
struct Matrix
{
int n,m;
double a[maxn][maxm];
void change(int c,int d)
{
n=c;
m=d;
for(int i=0; i<n; i++)
for(int j=0; j<m; j++)
a[i][j]=0;
}
void Copy(const Matrix &x)
{
n=x.n;
m=x.m;
for(int i=0; i<n; i++)
for(int j=0; j<m; j++)
a[i][j]=x.a[i][j];
}
void build(int n)
{
change(n*n,n*n);
for(int i=0; i<n*n; i++)
{
if(i%n!=0)
{
a[i][i-1]=-1;
a[i-1][i]=-1;
a[i][i]++;
a[i-1][i-1]++;
}
if(i%n!=0&&i/n!=0)
{
a[i][i-n-1]=-1;
a[i-n-1][i]=-1;
a[i][i]++;
a[i-n-1][i-n-1]++;
}
if(i%n!=0&&i/n!=n-1)
{
a[i][i+n-1]=-1;
a[i+n-1][i]=-1;
a[i][i]++;
a[i+n-1][i+n-1]++;
}
if(i/n!=n-1)
{
a[i][i+n]=-1;
a[i+n][i]=-1;
a[i][i]++;
a[i+n][i+n]++;
}
}
}
double det()
{
for(int i=1; i<n; i++)
{
for(int j=0; j<i; j++)
if(a[i][j]!=0)
{
for(int k=j+1; k<m; k++)
a[i][k]-=(a[j][k]*a[i][j]/a[j][j]);
a[i][j]=0;
}
}
double ans=1;
for(int i=0; i<n-1; i++)
ans*=a[i][i];
return ans;
}
};
int main()
{
int t;
scanf("%d",&t);
Matrix A;
A.build(t);
printf("%.0f\n",A.det());
return 0;
}
AC代码:
int main()
{
char ss[10][40]={"1","16","17745","1064918960","3271331573452806","504061943351319050000000"};
int T;
scanf("%d",&T);
while(T--)
{
int a;
scanf("%d",&a);
puts(ss[a-1]);
}
}
UvaLive 6600 Spanning trees in a secure lock pattern 矩阵行列式的更多相关文章
- 【2018 ICPC亚洲区域赛徐州站 A】Rikka with Minimum Spanning Trees(求最小生成树个数与总权值的乘积)
Hello everyone! I am your old friend Rikka. Welcome to Xuzhou. This is the first problem, which is a ...
- 多线程程序设计学习(7)read-write lock pattern
Read-Write Lock Pattern[读写]一:Read-Write Lock Pattern的参与者--->读写锁--->数据(共享资源)--->读线程--->写线 ...
- Cs Round#54 D Spanning Trees
题意:构造一张N个结点无重边.无自环的无向图.使得其最小生成树和最大生成树共享K条边. 样例一很具有启发性: 当K!=0时,我们可以先构造出一条链,链的长度为n-k的链,作为最小生成树的一部分,之后由 ...
- Minimum Spanning Trees
Kruskal’s algorithm always union the lightest link if two sets haven't been linked typedef struct { ...
- 【CodeChef EDGEST】Edges in Spanning Trees(树链剖分+树上启发式合并)
点此看题面 大致题意: 给你两棵\(n\)个点的树,对于第一棵树中的每条边\(e_1\),求存在多少条第二棵树中的边\(e_2\),使得第一棵树删掉\(e_1\)加上\(e_2\).第二棵树删掉\(e ...
- Gym102012A Rikka with Minimum Spanning Trees
题意 \(T\) 组数据,每组数据给定一个 \(n\) 个点,\(m\) 条边,可能含有重边自环的图,求出最小生成树的个数与边权和的乘积,对 \(10^9+7\) 取模. \(\texttt{Data ...
- 【C++设计模式】单件类与DCLP(Double Check Lock Pattern)的风险
[单件类] 保证只能有一个实例化对象,并提供全局的访问入口. [设计注意事项] 1.阻止所有实例化的方法: private 修饰构造函数,赋值构造函数,赋值拷贝函数. 2.定义单实例化对象的方法: a ...
- Android Lock Pattern 图案解锁
参考链接:http://www.cnblogs.com/dyingbleed/archive/2012/12/03/2800007.html http://blog.csdn.net/way_ping ...
- CF917D. Stranger Trees & TopCoder13369. TreeDistance(变元矩阵树定理+高斯消元)
题目链接 CF917D:https://codeforces.com/problemset/problem/917/D TopCoder13369:https://community.topcoder ...
随机推荐
- 优动漫PAINT基础系列之图层模式
在绘画软件优动漫PAINT中,笔刷工具属性中的消除锯齿变成灰色无法选择了?铅笔绘制没有压感?快来改改图层模式~ 优动漫PAINT下载:http://www.dongmansoft.com/xiazai ...
- Collectio集合,List《ArrayList,LinkedList》
集合: Collection类 package com.collection.demo; import java.util.ArrayList; import java.util.Arrays; im ...
- NOIp模拟赛三十
心态崩了的一天 先Orz yrx 开场五分钟yrx大吼一声:“这B题不是原题吗” hjw:“对哦好像我也做过哦” 过了十分钟yrx又大吼一声:“这C题我也做过啊,洪水那题啊” 于是 像我这种傻逼A题一 ...
- luogu P2664 树上游戏(点分治)
点分治真是一个好东西.可惜我不会 这种要求所有路经的题很可能是点分治. 然后我就不会了.. 既然要用点分治,就想,点分治有哪些优点?它可以\(O(nlogn)\)遍历分治树的所有子树. 那么现在的问题 ...
- Tomcat跨域资源共享
1.下载Jar包 cors-filter-1.7.jar java-property-utils-1.9.jar 下载完成后将Jar拷贝到tomcat下lib目录中 2.修改web.xml配置 在29 ...
- 紫书 习题 8-13 UVa 10570 (枚举+贪心)
我看到数据范围只有500, 第一反应枚举所有的可能,然后求出每种可能的最小次数. 但是不知道怎么求最小次数.我想的是尽量让一次交换可以让两个不在应该在的位置的数字 到原来应该在的位置的数字, 这样可以 ...
- 洛谷 P1524 十字绣
P1524 十字绣 题目背景 考古学家发现了一块布,布上做有针线活,叫做“十字绣”,即交替地在布的两面穿线. 题目描述 布是一个n*m的网格,线只能在网格的顶点处才能从布的一面穿到另一面.每一段线都覆 ...
- Android 获取麦克风的音量(分贝)
基础知识 度量声音强度.大家最熟悉的单位就是分贝(decibel,缩写为dB).这是一个无纲量的相对单位.计算公式例如以下: 分子是測量值的声压,分母是參考值的声压(20微帕.人类所能听到的最小声压) ...
- 1.Swift教程翻译系列——关于Swift
英文版PDF下载地址http://download.csdn.net/detail/tsingheng/7480427 我本来是做JAVA的.可是有一颗折腾的心,苹果公布Swift以后就下载了苹果的开 ...
- angularjs 自定义服务
<!DOCTYPE HTML> <html ng-app="myApp"> <head> <meta http-equiv="C ...