资源帖:CV代码库搜集
2013计算机视觉代码合集一:
原文链接:http://www.yuanyong.org/blog/cv/cv-code-one
切记:一定要看原文链接
原文链接; http://blog.csdn.net/zouxy09/article/details/8550952
此外,计算机视觉博客的代码库:http://www.cvchina.info/codes/
一、特征提取Feature Extraction:
- SIFT [1] [Demo
program][SIFT
Library] [VLFeat] - PCA-SIFT [2] [Project]
- Affine-SIFT [3] [Project]
- SURF [4] [OpenSURF]
[Matlab Wrapper] - Affine Covariant Features [5] [Oxford
project] - MSER [6] [Oxford
project] [VLFeat] - Geometric Blur [7] [Code]
- Local Self-Similarity Descriptor [8] [Oxford
implementation] - Global and Efficient Self-Similarity [9] [Code]
- Histogram of Oriented Graidents [10] [INRIA
Object Localization Toolkit] [OLT
toolkit for Windows] - GIST [11] [Project]
- Shape Context [12] [Project]
- Color Descriptor [13] [Project]
- Pyramids of Histograms of Oriented Gradients [Code]
- Space-Time Interest Points (STIP) [14][Project]
[Code] - Boundary Preserving Dense Local Regions [15][Project]
- Weighted Histogram[Code]
- Histogram-based Interest Points Detectors[Paper][Code]
- An OpenCV - C++ implementation of Local Self Similarity Descriptors [Project]
- Fast Sparse Representation with Prototypes[Project]
- Corner Detection [Project]
- AGAST Corner Detector: faster than FAST and even FAST-ER[Project]
- Real-time Facial Feature Detection using Conditional Regression Forests[Project]
- Global and Efficient Self-Similarity for Object Classification and Detection[code]
- WαSH: Weighted α-Shapes for Local Feature Detection[Project]
- HOG[Project]
- Online Selection of Discriminative Tracking Features[Project]
二、图像分割Image Segmentation:
- Normalized Cut [1] [Matlab
code] - Gerg Mori’ Superpixel code [2] [Matlab
code] - Efficient Graph-based Image Segmentation [3] [C++
code] [Matlab
wrapper] - Mean-Shift Image Segmentation [4] [EDISON
C++ code] [Matlab
wrapper] - OWT-UCM Hierarchical Segmentation [5] [Resources]
- Turbepixels [6] [Matlab
code 32bit] [Matlab
code 64bit] [Updated
code] - Quick-Shift [7] [VLFeat]
- SLIC Superpixels [8] [Project]
- Segmentation by Minimum Code Length [9] [Project]
- Biased Normalized Cut [10] [Project]
- Segmentation Tree [11-12] [Project]
- Entropy Rate Superpixel Segmentation [13] [Code]
- Fast Approximate Energy Minimization via Graph Cuts[Paper][Code]
- Efficient Planar Graph Cuts with Applications in Computer Vision[Paper][Code]
- Isoperimetric Graph Partitioning for Image Segmentation[Paper][Code]
- Random Walks for Image Segmentation[Paper][Code]
- Blossom V: A new implementation of a minimum cost perfect matching algorithm[Code]
- An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Computer Vision[Paper][Code]
- Geodesic Star Convexity for Interactive Image Segmentation[Project]
- Contour Detection and Image Segmentation Resources[Project][Code]
- Biased Normalized Cuts[Project]
- Max-flow/min-cut[Project]
- Chan-Vese Segmentation using Level Set[Project]
- A Toolbox of Level Set Methods[Project]
- Re-initialization Free Level Set Evolution via Reaction Diffusion[Project]
- Improved C-V active contour model[Paper][Code]
- A Variational Multiphase Level Set Approach to Simultaneous Segmentation and Bias Correction[Paper][Code]
- Level Set Method Research by Chunming Li[Project]
- ClassCut for Unsupervised Class Segmentation[code]
- SEEDS: Superpixels Extracted via Energy-Driven Sampling [Project][other]
三、目标检测Object Detection:
- A simple object detector with boosting [Project]
- INRIA Object Detection and Localization Toolkit [1] [Project]
- Discriminatively Trained Deformable Part Models [2] [Project]
- Cascade Object Detection with Deformable Part Models [3] [Project]
- Poselet [4] [Project]
- Implicit Shape Model [5] [Project]
- Viola and Jones’s Face Detection [6] [Project]
- Bayesian Modelling of Dyanmic Scenes for Object Detection[Paper][Code]
- Hand detection using multiple proposals[Project]
- Color Constancy, Intrinsic Images, and Shape Estimation[Paper][Code]
- Discriminatively trained deformable part models[Project]
- Gradient Response Maps for Real-Time Detection of Texture-Less Objects: LineMOD [Project]
- Image Processing On Line[Project]
- Robust Optical Flow Estimation[Project]
- Where's Waldo: Matching People in Images of Crowds[Project]
- Scalable Multi-class Object Detection[Project]
- Class-Specific Hough Forests for Object Detection[Project]
- Deformed Lattice Detection In Real-World Images[Project]
- Discriminatively trained deformable part models[Project]
四、显著性检测Saliency Detection:
- Itti, Koch, and Niebur’ saliency detection [1] [Matlab
code] - Frequency-tuned salient region detection [2] [Project]
- Saliency detection using maximum symmetric surround [3] [Project]
- Attention via Information Maximization [4] [Matlab
code] - Context-aware saliency detection [5] [Matlab
code] - Graph-based visual saliency [6] [Matlab
code] - Saliency detection: A spectral residual approach. [7] [Matlab
code] - Segmenting salient objects from images and videos. [8] [Matlab
code] - Saliency Using Natural statistics. [9] [Matlab
code] - Discriminant Saliency for Visual Recognition from Cluttered Scenes. [10] [Code]
- Learning to Predict Where Humans Look [11] [Project]
- Global Contrast based Salient Region Detection [12] [Project]
- Bayesian Saliency via Low and Mid Level Cues[Project]
- Top-Down Visual Saliency via Joint CRF and Dictionary Learning[Paper][Code]
- Saliency Detection: A Spectral Residual Approach[Code]
五、图像分类、聚类Image Classification, Clustering
- Pyramid Match [1] [Project]
- Spatial Pyramid Matching [2] [Code]
- Locality-constrained Linear Coding [3] [Project]
[Matlab code] - Sparse Coding [4] [Project]
[Matlab code] - Texture Classification [5] [Project]
- Multiple Kernels for Image Classification [6] [Project]
- Feature Combination [7] [Project]
- SuperParsing [Code]
- Large Scale Correlation Clustering Optimization[Matlab
code] - Detecting and Sketching the Common[Project]
- Self-Tuning Spectral Clustering[Project][Code]
- User Assisted Separation of Reflections from a Single Image Using a Sparsity Prior[Paper][Code]
- Filters for Texture Classification[Project]
- Multiple Kernel Learning for Image Classification[Project]
- SLIC Superpixels[Project]
六、抠图Image Matting
- A Closed Form Solution to Natural Image Matting [Code]
- Spectral Matting [Project]
- Learning-based Matting [Code]
七、目标跟踪Object Tracking:
- A Forest of Sensors - Tracking Adaptive Background Mixture Models [Project]
- Object Tracking via Partial Least Squares Analysis[Paper][Code]
- Robust Object Tracking with Online Multiple Instance Learning[Paper][Code]
- Online Visual Tracking with Histograms and Articulating Blocks[Project]
- Incremental Learning for Robust Visual Tracking[Project]
- Real-time Compressive Tracking[Project]
- Robust Object Tracking via Sparsity-based Collaborative Model[Project]
- Visual Tracking via Adaptive Structural Local Sparse Appearance Model[Project]
- Online Discriminative Object Tracking with Local Sparse Representation[Paper][Code]
- Superpixel Tracking[Project]
- Learning Hierarchical Image Representation with Sparsity, Saliency and Locality[Paper][Code]
- Online Multiple Support Instance Tracking [Paper][Code]
- Visual Tracking with Online Multiple Instance Learning[Project]
- Object detection and recognition[Project]
- Compressive Sensing Resources[Project]
- Robust Real-Time Visual Tracking using Pixel-Wise Posteriors[Project]
- Tracking-Learning-Detection[Project][OpenTLD/C++
Code] - the HandVu:vision-based hand gesture interface[Project]
- Learning Probabilistic Non-Linear Latent Variable Models for Tracking Complex Activities[Project]
八、Kinect:
九、3D相关:
- 3D Reconstruction of a Moving Object[Paper]
[Code] - Shape From Shading Using Linear Approximation[Code]
- Combining Shape from Shading and Stereo Depth Maps[Project][Code]
- Shape from Shading: A Survey[Paper][Code]
- A Spatio-Temporal Descriptor based on 3D Gradients (HOG3D)[Project][Code]
- Multi-camera Scene Reconstruction via Graph Cuts[Paper][Code]
- A Fast Marching Formulation of Perspective Shape from Shading under Frontal Illumination[Paper][Code]
- Reconstruction:3D Shape, Illumination, Shading, Reflectance, Texture[Project]
- Monocular Tracking of 3D Human Motion with a Coordinated Mixture of Factor Analyzers[Code]
- Learning 3-D Scene Structure from a Single Still Image[Project]
十、机器学习算法:
- Matlab class for computing Approximate Nearest Nieghbor (ANN) [Matlab
class providing interface toANN
library] - Random Sampling[code]
- Probabilistic Latent Semantic Analysis (pLSA)[Code]
- FASTANN and FASTCLUSTER for approximate k-means (AKM)[Project]
- Fast Intersection / Additive Kernel SVMs[Project]
- SVM[Code]
- Ensemble learning[Project]
- Deep Learning[Net]
- Deep Learning Methods for Vision[Project]
- Neural Network for Recognition of Handwritten Digits[Project]
- Training a deep autoencoder or a classifier on MNIST digits[Project]
- THE MNIST DATABASE of handwritten digits[Project]
- Ersatz:deep neural networks in the cloud[Project]
- Deep Learning [Project]
- sparseLM : Sparse Levenberg-Marquardt nonlinear least squares in C/C++[Project]
- Weka 3: Data Mining Software in Java[Project]
- Invited talk "A Tutorial on Deep Learning" by Dr. Kai Yu (余凯)[Video]
- CNN - Convolutional neural network class[Matlab
Tool] - Yann LeCun's Publications[Wedsite]
- LeNet-5, convolutional neural networks[Project]
- Training a deep autoencoder or a classifier on MNIST digits[Project]
- Deep Learning 大牛Geoffrey E. Hinton's HomePage[Website]
- Multiple Instance Logistic Discriminant-based Metric Learning (MildML) and Logistic Discriminant-based Metric Learning (LDML)[Code]
- Sparse coding simulation software[Project]
- Visual Recognition and Machine Learning Summer School[Software]
十一、目标、行为识别Object, Action Recognition:
- Action Recognition by Dense Trajectories[Project][Code]
- Action Recognition Using a Distributed Representation of Pose and Appearance[Project]
- Recognition Using Regions[Paper][Code]
- 2D Articulated Human Pose Estimation[Project]
- Fast Human Pose Estimation Using Appearance and Motion via Multi-Dimensional Boosting Regression[Paper][Code]
- Estimating Human Pose from Occluded Images[Paper][Code]
- Quasi-dense wide baseline matching[Project]
- ChaLearn Gesture Challenge: Principal motion: PCA-based reconstruction of motion histograms[Project]
- Real Time Head Pose Estimation with Random Regression Forests[Project]
- 2D Action Recognition Serves 3D Human Pose Estimation[Project]
- A Hough Transform-Based Voting Framework for Action Recognition[Project]
- Motion Interchange Patterns for Action Recognition in Unconstrained Videos[Project]
- 2D articulated human pose estimation software[Project]
- Learning and detecting shape models [code]
- Progressive Search Space Reduction for Human Pose Estimation[Project]
- Learning Non-Rigid 3D Shape from 2D Motion[Project]
十二、图像处理:
- Distance Transforms of Sampled Functions[Project]
- The Computer Vision Homepage[Project]
- Efficient appearance distances between windows[code]
- Image Exploration algorithm[code]
- Motion Magnification 运动放大 [Project]
- Bilateral Filtering for Gray and Color Images 双边滤波器 [Project]
- A Fast Approximation of the Bilateral Filter using a Signal Processing Approach [Project]
十三、一些实用工具:
- EGT: a Toolbox for Multiple View Geometry and Visual Servoing[Project]
[Code] - a development kit of matlab mex functions for OpenCV library[Project]
- Fast Artificial Neural Network Library[Project]
十四、人手及指尖检测与识别:
- finger-detection-and-gesture-recognition [Code]
- Hand and Finger Detection using JavaCV[Project]
- Hand and fingers detection[Code]
十五、场景解释:
- Nonparametric Scene Parsing via Label Transfer [Project]
十六、光流Optical flow:
- High accuracy optical flow using a theory for warping [Project]
- Dense Trajectories Video Description [Project]
- SIFT Flow: Dense Correspondence across Scenes and its Applications[Project]
- KLT: An Implementation of the Kanade-Lucas-Tomasi Feature Tracker [Project]
- Tracking Cars Using Optical Flow[Project]
- Secrets of optical flow estimation and their principles[Project]
- implmentation of the Black and Anandan dense optical flow method[Project]
- Optical Flow Computation[Project]
- Beyond Pixels: Exploring New Representations and Applications for Motion Analysis[Project]
- A Database and Evaluation Methodology for Optical Flow[Project]
- optical flow relative[Project]
- Robust Optical Flow Estimation [Project]
- optical flow[Project]
十七、图像检索Image Retrieval:
十八、马尔科夫随机场Markov Random Fields:
- Markov Random Fields for Super-Resolution [Project]
- A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors [Project]
十九、运动检测Motion detection:
- Moving Object Extraction, Using Models or Analysis of Regions [Project]
- Background Subtraction: Experiments and Improvements for ViBe [Project]
- A Self-Organizing Approach to Background Subtraction for Visual Surveillance Applications [Project]
- changedetection.net: A new change detection benchmark dataset[Project]
- ViBe - a powerful technique for background detection and subtraction in video sequences[Project]
- Background Subtraction Program[Project]
- Motion Detection Algorithms[Project]
- Stuttgart Artificial Background Subtraction Dataset[Project]
- Object Detection, Motion Estimation, and Tracking[Project]
资源帖:CV代码库搜集的更多相关文章
- Xcode之外的文档浏览工具--Dash (在iOS代码库中浏览本帖)
链接地址:http://www.cocoachina.com/bbs/read.php?tid=273479 Xcode之外的文档浏览工具--Dash (在iOS代码库中浏览本帖) ...
- iOS流行的开源代码库
本文介绍一些流行的iOS的开源代码库 1.AFNetworking 更新频率高的轻量级的第三方网络库,基于NSURL和NSOperation,支持iOS和OSX.https://github.com/ ...
- paper 15 :整理的CV代码合集
这篇blog,原来是西弗吉利亚大学的Li xin整理的,CV代码相当的全,不知道要经过多长时间的积累才会有这么丰富的资源,在此谢谢LI Xin .我现在分享给大家,希望可以共同进步!还有,我需要说一下 ...
- CodeGuide 300+文档、100+代码库,一个指导程序员写代码的,Github 仓库开源啦!
作者:小傅哥 博客:https://bugstack.cn 沉淀.分享.成长,让自己和他人都能有所收获! 一.路怎样走,让你们自己挑 B站 视频:https://www.bilibili.com/vi ...
- 打造smali代码库辅助分析
打造smali代码库辅助分析 在分析Android应用程序的时候,我们往往会插入代码重打包apk来辅助我们分析的工作 一个比较取巧的方法就是先用java写好代码以及相关的调用之后, 然后直接扣出代码 ...
- Overview of the Oppia codebase(Oppia代码库总览)
Oppia is built with Google App Engine. Its backend is written in Python, and its frontend is written ...
- 我的github代码库
我的github代码库地址:https://github.com/gooree.Enjoy coding,enjoy sharing.
- 使用GitHub for Windows客户端管理京东代码库项目
1.下载并安装 GitHub for Windows 客户端 https://windows.github.com/ 2.在京东代码库中新的代码库,可以创建私有的代码库 https://code.jd ...
- git代码库误操作还原记录
先做一些前情提要: 我们项目使用git作为代码管理,同时为了操作更方便,安装了乌龟git(tortoiseGit)工具.以下几乎所有操作都是在乌龟git上进行. 我们的项目是分阶段完成的,在完成上一阶 ...
随机推荐
- C++ 资源大全中文版
标准库 C++标准库,包括了STL容器,算法和函数等. C++ Standard Library:是一系列类和函数的集合,使用核心语言编写,也是C++ISO自身标准的一部分. Standard Tem ...
- Noip 2015 练习
子串 传送门 Solution \(f[i][j][k]\)表示A到i,B到j第k个子串的答案 \(g[i][j][k]\)表示A到i,B到j第k个子串且A[i]一定使用 \(g[i][j][k]=( ...
- 5.win上安装ES
安装步骤如下: 1.安装JDK 至少1.8.0_73以上版本,使用 java -version 这个命令进行查看java的版本 2.下载和解压缩Elasticsearch安装包, 解压后目录结构: 3 ...
- BZOJ 3930 Luogu P3172 选数 (莫比乌斯反演)
手动博客搬家:本文发表于20180310 11:46:11, 原地址https://blog.csdn.net/suncongbo/article/details/79506484 题目链接: (Lu ...
- firebird的递归查询
with RECURSIVE cte as ( select a.* from PM_PROJECT a where a.pm_id='root_id' union all select k.* fr ...
- 【Educational Codeforces Round 53 (Rated for Div. 2) C】Vasya and Robot
[链接] 我是链接,点我呀:) [题意] [题解] 如果|x|+|y|>n 显然.从(0,0)根本就没法到(x,y) 但|x|+|y|<=n还不一定就能到达(x,y) 注意到,你每走一步路 ...
- (14)Spring Boot定时任务的使用【从零开始学Spring Boot】
本文介绍在 Spring Boot 中如何使用定时任务,使用非常简单,就不做过多说明了. com.kfit.base.scheduling.SchedulingConfig: package com. ...
- [bzoj2049][Sdoi2008]Cave 洞穴勘测_LCT
Cave 洞穴勘测 bzoj-2049 Sdoi-2008 题目大意:维护一个数据结构,支持森林中加边,删边,求两点连通性.n个点,m个操作. 注释:$1\le n\le 10^4$,$1\le m\ ...
- 洛谷——P1094 纪念品分组
https://www.luogu.org/problem/show?pid=1094#sub 题目描述 元旦快到了,校学生会让乐乐负责新年晚会的纪念品发放工作.为使得参加晚会的同学所获得 的纪念品价 ...
- Apache vs. Nginx
精简版 Apache:出名比较早,09年左右是最流行的时期,功能强大,可以根据需求配置为基于进程,基于线程或者基于事件的,但是消耗内存较多,对硬件需求较高,内存是影响服务器性能的最关键因素,在VPS上 ...