【传送门:51nod-1189


简要题意:

  给出一个数n,求出有多少个正整数x,y(0<x<=y)满足$1/n!=1/x+1/y$


题解:

  一开始还以为不可做

  结果推一下柿子就会了

  $1/n!=1/x+1/y$可以转化为$xy=n!*(x+y)$

  又可以转化为$xy-n!*(x+y)=0$,得到$xy-n!*(x+y)+n!^2=n!^2$,得到$(x-n!)*(y-n!)=n!^2$

  woc,水题

  直接将n!质因数分解,然后每个质因数的指数*2(因为是n!的平方),求因数个数就行了

  因为要求x<=y,所以将(ans+1)/2,这部分用逆元求即可


参考代码:

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long LL;
LL Mod=1e9+;
int prime[];
int v[],m;
void get_p(int n)
{
memset(v,,sizeof(v));
m=;
for(int i=;i<=n;i++)
{
if(v[i]==)
{
prime[++m]=i;
v[i]=i;
}
for(int j=;j<=m;j++)
{
if(prime[j]>n/i||prime[j]>v[i]) break;
v[i*prime[j]]=prime[j];
}
}
}
LL p_mod(LL a,LL b)
{
LL ans=;
while(b!=)
{
if(b%==) ans=ans*a%Mod;
a=a*a%Mod;b/=;
}
return ans;
}
int main()
{
int n;
scanf("%d",&n);
get_p(n);
LL sum=,ans=;
for(int i=;i<=m;i++)
{
LL d=prime[i];sum=;
while(d<=n)
{
sum=(sum+n/d)%Mod;
d*=prime[i];
}
sum=(sum*2LL%Mod+)%Mod;
ans=ans*sum%Mod;
}
ans=(ans+)%Mod;
LL ny=p_mod(2LL,Mod-);
printf("%lld\n",ans*ny%Mod);
return ;
}

51nod-1189: 阶乘分数的更多相关文章

  1. 51 nod 1189 阶乘分数

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1189 题目思路: 1/n! = 1/x +1/y ==> ...

  2. 51nod 1189 算术基本定理/组合数学

    www.51nod.com/onlineJudge/questionCode.html#!problemId=1189 1189 阶乘分数 题目来源: Spoj 基准时间限制:1 秒 空间限制:131 ...

  3. 51nod1189 阶乘分数

    (x-n!)(y-n!)=n!2 ans=t[n]+1.t表示的是n!2的小于n!的约数个数.n!2=p1a1*p2a2*p3a3...t[n]=(a1+1)*(a2+1)...-1 /2; 2对于n ...

  4. 51Nod 1003 阶乘后面0的数量(数学,思维题)

    1003 阶乘后面0的数量 基准时间限制:1 秒 空间限制:131072 KB 分值: 5         难度:1级算法题 n的阶乘后面有多少个0? 6的阶乘 = 1*2*3*4*5*6 = 720 ...

  5. 51nod 1187 寻找分数

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  6. 51nod 1257 01分数规划/二分

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1257 1257 背包问题 V3 基准时间限制:3 秒 空间限制:1310 ...

  7. pku 1401 Factorial 算数基本定理 && 51nod 1003 阶乘后面0的数量

    链接:http://poj.org/problem?id=1401 题意:计算N!的末尾0的个数 思路:算数基本定理 有0,分解为2*5,寻找2*5的对数,2的因子个数大于5,转化为寻找因子5的个数. ...

  8. 51Nod 1003 阶乘后面0的数量 | 思维

    题意:n的阶乘后面0的个数,如果直接算出阶乘再数0的数量一定会超时的. 因为10=2*5,所以求出5贡献的次数就行. #include "bits/stdc++.h" using ...

  9. 51nod 1003 阶乘后面0的数量

    每一个 2 与一个 5 相乘,结果就增加一个零. 所以求 n! 后面的连续零的个数,其实就是求其中相乘的数含有因子每对因子 2 与 5  的个数. 又因为从1到某个数,所含 2 的个数比 5 多,所以 ...

  10. 51nod 1189

    题目 神犇题解 表示自己数论渣成狗...膜拜神犇. n!*(x+y)=x*y n!^2=(x-n!)*(y-n!) 那么求出n!^2的因数个数就可以了.

随机推荐

  1. ASP.NET-AJAX.FORM提交附件失败

    尝试了不少时间在AJAX.FORM提交附件,发现完全不行,经过下面的这个博客的介绍,使用ajax.form.js插件提交成功,记录一下该博文网址和结论: 相关网址:http://www.cnblogs ...

  2. fedora linux源代码下载

    yumdownloader --source kernel 如果是下载insight 就是 yumdownloader --source insight 下载到的是当前目录. 然后在用rpm2cpio ...

  3. ftp for linux 配置

    曾经配的熟悉的不能再熟悉了的东西,多年不用就忘了. 好真是好记性不如烂笔头.本文假如你已经安装好了, 1,ftp默认是不同意root用户登录的,假设要root用户登录,请例如以下改动:打开/etc/v ...

  4. mysql的查询练习1

    1.多表查询

  5. php在数字前面补0得到固定长度数字的两种方法

    比較基础,事实上两个内置函数都能实现. 1  sprintf 语法: string sprintf(string format, mixed [args]...); 返回值: 字符串 函数种类: 资料 ...

  6. 【原创】ApacheTomcat集群在Linux下的搭建步骤

    在RedHat5(以下简称RH)上搭建ApacheTomcat的集群环境,有以下步骤: 1.首先安装apr和apr-util apr-util需要依赖于apr包,所以先安装apr, http://fi ...

  7. double int 类型的区别

    内部组织格式不同: po [NSString stringWithFormat:@"%d", f] 107886912 (lldb) po [NSString stringWith ...

  8. 预测一下web前端未来的6个趋势

    2018年前端技术的发展也将进入到一个相对稳定的阶段, 就前端主流技术框架的发展而言,过去的几年里发展极快,在填补原有技术框架空白和不足的同时也渐渐趋于成熟. 未来前端在已经趋向成熟的技术方向上面将会 ...

  9. Vue中两种跳转方式

    第一种:通过标签跳转,<router-link></router-link> 第二种:通过js跳转,定义点击事件进行跳转

  10. LayUI加载js无效问题

    在部署系统的时候,本地调试一切正常,layer.js均能正常加载.然而部署到服务器之后,经常性的出现layer.js无法加载问题.导致页面弹框无法使用. 一开始以为是Google浏览器问题,因为刚刚更 ...