Fibonacci Tree

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 2340    Accepted Submission(s): 748

Problem Description
  Coach Pang is interested in Fibonacci numbers while Uncle Yang wants him to do some research on Spanning Tree. So Coach Pang decides to solve the following problem:

  Consider a bidirectional graph G with N vertices and M edges. All edges are painted into either white or black. Can we find a Spanning Tree with some positive Fibonacci number of white edges?

(Fibonacci number is defined as 1, 2, 3, 5, 8, ... )
 
Input
  The first line of the input contains an integer T, the number of test cases.

  For each test case, the first line contains two integers N(1 <= N <= 105) and M(0 <= M <= 105).

  Then M lines follow, each contains three integers u, v (1 <= u,v <= N, u<> v) and c (0 <= c <= 1), indicating an edge between u and v with a color c (1 for white and 0 for black).
 
Output
  For each test case, output a line “Case #x: s”. x is the case number and s is either “Yes” or “No” (without quotes) representing the answer to the problem.
 
Sample Input
2
4 4
1 2 1
2 3 1
3 4 1
1 4 0
5 6
1 2 1
1 3 1
1 4 1
1 5 1
3 5 1
4 2 1
 
Sample Output
Case #1: Yes
Case #2: No
 
Source





题意:问构成的生成树当中是否存在黑色边(边为1)数为斐波那契数
思路:求出生成树中最小包括的黑色边数。和最多黑色边数,假设有斐波那契数在两者之间,则能够构成。由于黑白边能够搭配使用
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
int n,m;
int fibo[50];
int f[100010];
struct node
{
int u,v,c;
} s[100010]; bool cmp1(node x , node y)
{
return x.c < y.c;
} bool cmp2(node x, node y)
{
return x.c > y.c;
} int find(int x)
{
return x == f[x] ? x : f[x] = find(f[x]);
} void Union(int x ,int y)
{
int fx = find(x);
int fy = find(y); if(fx != fy)
{
f[fx] = fy;
}
} int main()
{
#ifdef xxz
freopen("in.txt","r",stdin);
#endif
fibo[1] = 1;
fibo[2] = 2;
for(int i = 3; ; i++)
{
fibo[i] = fibo[i-1] + fibo[i-2];
if(fibo[i] >= 100000) break;
} int T,Case = 1;;
scanf("%d",&T); while(T--)
{ scanf("%d%d",&n,&m);
for(int i = 1; i <= n; i++) f[i] = i; for(int i = 0; i < m; i++)
{ scanf("%d%d%d",&s[i].u,&s[i].v,&s[i].c);
Union(s[i].u,s[i].v);
}
int cent = 0;
int bl = 0, bh = 0;
int root = 0,size = 0; for(int i = 1; i <= n; i++)
{
if(f[i] == i)
{
cent++;
root = i;
}
} printf("Case #%d: ",Case++);
if(cent >= 2) cout<<"No"<<endl;//首先要推断能否构成一个生成树。推断根节点个数是否为1即可
else
{
sort(s,s+m,cmp1);
for(int i = 1; i <= n; i++) f[i] = i; for(int i = 0; i < m; i++)
{
int fu = find(s[i].u);
int fv = find(s[i].v);
if(fu == fv) continue; bl += s[i].c;
size++;
Union(s[i].u,s[i].v);
if(size == n-1) break;
} size = 0;
sort(s,s+m,cmp2);
for(int i = 1; i <= n; i++) f[i] = i; for(int i = 0; i < m; i++)
{
int fu = find(s[i].u);
int fv = find(s[i].v);
if(fu == fv) continue; bh += s[i].c;
size++;
Union(s[i].u,s[i].v);
if(size == n-1) break;
} int flag = 0;
for(int i =1; fibo[i] <= 100000 ; i++ )
{
if(fibo[i] >= bl && fibo[i] <= bh)
{
flag = 1;
break;
}
}
if(flag) printf("Yes\n");
else printf("No\n"); } }
}

Hdu4786的更多相关文章

  1. 【最小生成树】【kruscal】hdu4786 Fibonacci Tree

    假设这张图能够形成具有k条白边的生成树, 则易证k一定形成一个连续的区间[a,b],中间一定不会断开.要是断开……tm怎么可能. 所以求出a,b就好啦,人家都给你把白边赋成1了,直接跑一下最小生成树, ...

  2. hdu4786 Fibonacci Tree (最小生成树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4786 题意:给定图的n个点和m条双向边,告诉你每条边的权值.权值为1表示该边是白边,权值为0表示该边为 ...

  3. hdu4786 Fibonacci Tree[最小生成树]【结论题】

    一道结论题:如果最小生成树和最大生成树之间存在fib数,成立.不存在或者不连通则不成立.由于是01图,所以这个区间内的任何生成树都存在. 证明:数学归纳?如果一棵树没有办法再用非树边0边替代1边了,那 ...

  4. 最小生成树练习2(Kruskal)

    两个BUG鸣翠柳,一行代码上西天... hdu4786 Fibonacci Tree(生成树)问能否用白边和黑边构成一棵生成树,并且白边数量是斐波那契数. 题解:分别优先加入白边和黑边,求出生成树能包 ...

  5. Fibonacci Tree

    hdu4786:http://acm.hdu.edu.cn/showproblem.php?pid=4786 题意:给你一个无向图,然后其中有的边是白色的有的边是黑色的.然后问你是否存在一棵生成树,在 ...

  6. The 2013 ACMICPC Asia Regional Chengdu

    还有19天出发北京站,今年北京站的出题方是上交,去年他们出的成都现场的赛题,首先复盘一下. 去年的成都是我经历的第一次现场赛,也是近距离第一次见到了CLJ的真人,最后也是被虐惨了,那时候是声闻大神带着 ...

随机推荐

  1. 从CSDN搬过来

    https://blog.csdn.net/qq_34416123 从CSDN搬过来 神奇的代码竟然没有弄成博客园这里面的格式 所以以前的很多博客的代码都是直接放在那里了. 懒得去改了.

  2. 紫书 习题7-13 UVa 817(dfs+栈求表达式的值)

    题目链接  点击打开链接 这道题分为两个部分, 一用搜索枚举每种可能, 二计算表达式的值, 有挺多细节需要注意 特别注意我的代码中在计算表达式的值中用到了一个!(代码枚举中的!表示不加符号, 我现在说 ...

  3. 紫书 习题7-14 UVa 307(暴搜+剪枝)

    这道题一开始我想的是在排序之后只在头和尾往中间靠近来找木块, 然后就WA, 事实证明这种方法是错误的. 然后参考了别人的博客.发现别人是直接暴搜, 但是加了很多剪枝, 所以不会超时. 我也想过这个做法 ...

  4. HDU 4828

    其实..这题是<组合数学>的习题中的一道......当初不会..... 想到一个证明: 填入2n个数,把填在上方的数的位置填上+1,下方的填上-1.这样,在序列1....2n的位置,任意前 ...

  5. Objective-C基础笔记(3)OC的内存管理

    Objective-C的内存基本管理 在OC中每一个变量都保存着引用计数器,当这个对象的引用计数器为0的时候该对象会被回收.当使用alloc.new或者copy创建一个对象的时候,对象的引用计数器被置 ...

  6. node-webkit 主页面和 iframe 页通讯

    <html lang="en-US"> <head> <title>Hello World!</title> <style&g ...

  7. html 标签: image也能提交form!!!

    html 标签: image也能提交form! !! image也能提交form 先前常常使用"<input type="submit" value="i ...

  8. ThinkPHP5.0框架开发--第7章 TP5.0数据库操作

    ThinkPHP5.0框架开发--第7章 TP5.0数据库操作 第7章 TP5.0数据库操作 ===================================================== ...

  9. vue 如何实现在函数中触发路由跳转

    this.$router.push({path:'/index'}) 欢迎加入前端交流群交流知识&&获取视频资料:749539640 methods:{ click(){ if(dat ...

  10. 线上服务CPU100%问题快速定位实战--转

    来自微信公众号 架构师之路 功能问题,通过日志,单步调试相对比较好定位. 性能问题,例如线上服务器CPU100%,如何找到相关服务,如何定位问题代码,更考验技术人的功底. 58到家架构部,运维部,58 ...