Fibonacci Tree

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 2340    Accepted Submission(s): 748

Problem Description
  Coach Pang is interested in Fibonacci numbers while Uncle Yang wants him to do some research on Spanning Tree. So Coach Pang decides to solve the following problem:

  Consider a bidirectional graph G with N vertices and M edges. All edges are painted into either white or black. Can we find a Spanning Tree with some positive Fibonacci number of white edges?

(Fibonacci number is defined as 1, 2, 3, 5, 8, ... )
 
Input
  The first line of the input contains an integer T, the number of test cases.

  For each test case, the first line contains two integers N(1 <= N <= 105) and M(0 <= M <= 105).

  Then M lines follow, each contains three integers u, v (1 <= u,v <= N, u<> v) and c (0 <= c <= 1), indicating an edge between u and v with a color c (1 for white and 0 for black).
 
Output
  For each test case, output a line “Case #x: s”. x is the case number and s is either “Yes” or “No” (without quotes) representing the answer to the problem.
 
Sample Input
2
4 4
1 2 1
2 3 1
3 4 1
1 4 0
5 6
1 2 1
1 3 1
1 4 1
1 5 1
3 5 1
4 2 1
 
Sample Output
Case #1: Yes
Case #2: No
 
Source





题意:问构成的生成树当中是否存在黑色边(边为1)数为斐波那契数
思路:求出生成树中最小包括的黑色边数。和最多黑色边数,假设有斐波那契数在两者之间,则能够构成。由于黑白边能够搭配使用
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
int n,m;
int fibo[50];
int f[100010];
struct node
{
int u,v,c;
} s[100010]; bool cmp1(node x , node y)
{
return x.c < y.c;
} bool cmp2(node x, node y)
{
return x.c > y.c;
} int find(int x)
{
return x == f[x] ? x : f[x] = find(f[x]);
} void Union(int x ,int y)
{
int fx = find(x);
int fy = find(y); if(fx != fy)
{
f[fx] = fy;
}
} int main()
{
#ifdef xxz
freopen("in.txt","r",stdin);
#endif
fibo[1] = 1;
fibo[2] = 2;
for(int i = 3; ; i++)
{
fibo[i] = fibo[i-1] + fibo[i-2];
if(fibo[i] >= 100000) break;
} int T,Case = 1;;
scanf("%d",&T); while(T--)
{ scanf("%d%d",&n,&m);
for(int i = 1; i <= n; i++) f[i] = i; for(int i = 0; i < m; i++)
{ scanf("%d%d%d",&s[i].u,&s[i].v,&s[i].c);
Union(s[i].u,s[i].v);
}
int cent = 0;
int bl = 0, bh = 0;
int root = 0,size = 0; for(int i = 1; i <= n; i++)
{
if(f[i] == i)
{
cent++;
root = i;
}
} printf("Case #%d: ",Case++);
if(cent >= 2) cout<<"No"<<endl;//首先要推断能否构成一个生成树。推断根节点个数是否为1即可
else
{
sort(s,s+m,cmp1);
for(int i = 1; i <= n; i++) f[i] = i; for(int i = 0; i < m; i++)
{
int fu = find(s[i].u);
int fv = find(s[i].v);
if(fu == fv) continue; bl += s[i].c;
size++;
Union(s[i].u,s[i].v);
if(size == n-1) break;
} size = 0;
sort(s,s+m,cmp2);
for(int i = 1; i <= n; i++) f[i] = i; for(int i = 0; i < m; i++)
{
int fu = find(s[i].u);
int fv = find(s[i].v);
if(fu == fv) continue; bh += s[i].c;
size++;
Union(s[i].u,s[i].v);
if(size == n-1) break;
} int flag = 0;
for(int i =1; fibo[i] <= 100000 ; i++ )
{
if(fibo[i] >= bl && fibo[i] <= bh)
{
flag = 1;
break;
}
}
if(flag) printf("Yes\n");
else printf("No\n"); } }
}

Hdu4786的更多相关文章

  1. 【最小生成树】【kruscal】hdu4786 Fibonacci Tree

    假设这张图能够形成具有k条白边的生成树, 则易证k一定形成一个连续的区间[a,b],中间一定不会断开.要是断开……tm怎么可能. 所以求出a,b就好啦,人家都给你把白边赋成1了,直接跑一下最小生成树, ...

  2. hdu4786 Fibonacci Tree (最小生成树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4786 题意:给定图的n个点和m条双向边,告诉你每条边的权值.权值为1表示该边是白边,权值为0表示该边为 ...

  3. hdu4786 Fibonacci Tree[最小生成树]【结论题】

    一道结论题:如果最小生成树和最大生成树之间存在fib数,成立.不存在或者不连通则不成立.由于是01图,所以这个区间内的任何生成树都存在. 证明:数学归纳?如果一棵树没有办法再用非树边0边替代1边了,那 ...

  4. 最小生成树练习2(Kruskal)

    两个BUG鸣翠柳,一行代码上西天... hdu4786 Fibonacci Tree(生成树)问能否用白边和黑边构成一棵生成树,并且白边数量是斐波那契数. 题解:分别优先加入白边和黑边,求出生成树能包 ...

  5. Fibonacci Tree

    hdu4786:http://acm.hdu.edu.cn/showproblem.php?pid=4786 题意:给你一个无向图,然后其中有的边是白色的有的边是黑色的.然后问你是否存在一棵生成树,在 ...

  6. The 2013 ACMICPC Asia Regional Chengdu

    还有19天出发北京站,今年北京站的出题方是上交,去年他们出的成都现场的赛题,首先复盘一下. 去年的成都是我经历的第一次现场赛,也是近距离第一次见到了CLJ的真人,最后也是被虐惨了,那时候是声闻大神带着 ...

随机推荐

  1. iOS UI16_数据持久化

    // // Student.h // UI16_数据持久化 // // Created by dllo on 15/8/19. // Copyright (c) 2015年 zhozhicheng. ...

  2. css样式中@import引入样式

    css样式中@import引入样式 学习了:http://www.cnblogs.com/zbo/archive/2010/11/17/1879590.html

  3. C++实现页码数字统计

    #include<iostream> #include<iomanip> #include<cstdlib> #include<ctime> #incl ...

  4. 怎样利用JDBC连接并操作Oracle数据库

    之前学习.NET的时候.以前利用ODBC进行连接数据库,而在Java中通常採用JDBC连接数据库,这里以oracle数据库为例简单的总结一下利用JDBC怎样连接并操作数据库. 1.连接 public ...

  5. System.getProperty()方法可以获取的值

    /** 获得当前类的完整路径.最后一句 */ package org.outman.dms.server; import java.net.MalformedURLException; import ...

  6. Codeforces Round #252 (Div. 2)-C,D

    C题就是一个简单的模拟.首先给每一个人两个.然后把剩下的都给一个人就好了. 给的时候蛇形给. #include<stdio.h> #include<string.h> #inc ...

  7. 一个软件实现的Linux看门狗—soft_wdt

    soft_wdt(下面简称本软件)是一个软件实现的Linux看门狗. 本软件是一款开源.免费软件. 下载地址: https://github.com/sunmingbao/soft-wdt/archi ...

  8. FireFox所支持的全部标签(持续更新ing)

    近期研究上各个浏览器的差别,得到一些资料,FireFox眼下所支持的全部标签类型,持续更新,供大家參考和学习,不喜勿喷哦 http://mxr.mozilla.org/seamonkey/source ...

  9. mariadb克隆

    oracle有克隆安装,事实上mysql/mariadb相似.仅仅需简单几步就能够直接在异机直接启动. 环境: node01安装完毕的mariadb; node02一个新机器 如今将node01克隆到 ...

  10. 通过setInterval函数在地图上每隔1s打一次点

    <?php echo <<<_END <!doctype html> <html> <head> <meta charset=&quo ...