机器学习: Softmax Classifier (三个隐含层)
程序实现 softmax classifier, 含有三个隐含层的情况。activation function 是 ReLU : f(x)=max(0,x)
f1=w1x+b1
h1=max(0,f1)
f2=w2h1+b2
h2=max(0,f2)
f3=w3h2+b3
h3=max(0,f3)
f4=w4h3+b4
y=ef4i∑jef4j
function Out=Softmax_Classifier_3(train_x, train_y, opts)
% activation function RELU. y=max(0, x);
% setting learning parameters
step_size=opts.step_size;
reg=opts.reg;
batchsize = opts.batchsize;
numepochs = opts.numepochs;
K=opts.class;
h1=opts.hidden_1;
h2=opts.hidden_2;
h3=opts.hidden_3;
D=size(train_x, 2);
W1=0.01*randn(D, h1);
b1=zeros(1, h1);
W2=0.01*randn(h1, h2);
b2=zeros(1, h2);
W3=0.01*randn(h2, h3);
b3=zeros(1, h3);
W4=0.01*randn(h3, K);
b4=zeros(1, K);
loss(1 : numepochs)=0;
num_examples=size(train_x, 1);
numbatches = num_examples / batchsize;
for epoch=1:numepochs
kk = randperm(num_examples);
loss(epoch)=0;
tic;
sprintf('epoch %d: \n' , epoch)
for bat=1:numbatches
batch_x = train_x(kk((bat - 1) * batchsize + 1 : bat * batchsize), :);
batch_y = train_y(kk((bat - 1) * batchsize + 1 : bat * batchsize), :);
%% forward
f1=batch_x*W1+repmat(b1, batchsize, 1);
hiddenval_1=max(0, f1);
f2=hiddenval_1*W2+repmat(b2, batchsize, 1);
hiddenval_2=max(0, f2);
f3=hiddenval_2*W3+repmat(b3, batchsize, 1);
hiddenval_3=max(0, f3);
scores=hiddenval_3*W4+repmat(b4, batchsize, 1);
%% the loss
exp_scores=exp(scores);
dd=repmat(sum(exp_scores, 2), 1, K);
probs=exp_scores./dd;
correct_logprobs=-log(sum(probs.*batch_y, 2));
data_loss=sum(correct_logprobs)/batchsize;
reg_loss=0.5*reg*sum(sum(W1.*W1))+0.5*reg*sum(sum(W2.*W2))+0.5*reg*sum(sum(W3.*W3))+0.5*reg*sum(sum(W4.*W4));
loss(epoch) =loss(epoch)+ data_loss + reg_loss;
%% back propagation
% output layer
dscores = probs-batch_y;
dscores=dscores/batchsize;
dW4=hiddenval_3'*dscores;
db4=sum(dscores);
% hidden layer 3
dhiddenval_3=dscores*W4';
mask=max(sign(hiddenval_3), 0);
df_3=dhiddenval_3.*mask;
dW3=hiddenval_2'*df_3;
db3=sum(df_3);
% hidden layer 2
dhiddenval_2=df_3*W3';
mask=max(sign(hiddenval_2), 0);
df_2=dhiddenval_2.*mask;
dW2=hiddenval_1'*df_2;
db2=sum(df_2);
% hidden layer 1
dhiddenval_1=df_2*W2';
mask=max(sign(hiddenval_1), 0);
df_1=dhiddenval_1.*mask;
dW1=batch_x'*df_1;
db1=sum(df_1);
%% update
dW4=dW4+reg*W4;
dW3=dW3+reg*W3;
dW2=dW2+reg*W2;
dW1=dW1+reg*W1;
W4=W4-step_size*dW4;
b4=b4-step_size*db4;
W3=W3-step_size*dW3;
b3=b3-step_size*db3;
W2=W2-step_size*dW2;
b2=b2-step_size*db2;
W1=W1-step_size*dW1;
b1=b1-step_size*db1;
end
loss(epoch)=loss(epoch)/numbatches;
sprintf('training loss is %f: \n', loss(epoch))
toc;
end
Out.W1=W1;
Out.W2=W2;
Out.W3=W3;
Out.W4=W4;
Out.b1=b1;
Out.b2=b2;
Out.b3=b3;
Out.b4=b4;
Out.loss=loss;
机器学习: Softmax Classifier (三个隐含层)的更多相关文章
- 机器学习:Softmax Classifier (两个隐含层)
程序实现 softmax classifier, 含有两个隐含层的情况.activation function 是 ReLU : f(x)=max(0,x) f1=w1x+b1 h1=max(0,f1 ...
- 机器学习 Softmax classifier (一个隐含层)
程序实现 softmax classifier, 含有一个隐含层的情况.activation function 是 ReLU : f(x)=max(0,x) f1=w1x+b1 h1=max(0,f1 ...
- 机器学习 Softmax classifier (无隐含层)
程序实现 Softmax classifer, 没有隐含层, f=wx+b y=efi∑jefj %% Softmax classifier function Out=Softmax_Classifi ...
- python机器学习实战(三)
python机器学习实战(三) 版权声明:本文为博主原创文章,转载请指明转载地址 www.cnblogs.com/fydeblog/p/7277205.html 前言 这篇notebook是关于机器 ...
- 基于MNIST数据集使用TensorFlow训练一个包含一个隐含层的全连接神经网络
包含一个隐含层的全连接神经网络结构如下: 包含一个隐含层的神经网络结构图 以MNIST数据集为例,以上结构的神经网络训练如下: #coding=utf-8 from tensorflow.exampl ...
- 基于MNIST数据集使用TensorFlow训练一个没有隐含层的浅层神经网络
基础 在参考①中我们详细介绍了没有隐含层的神经网络结构,该神经网络只有输入层和输出层,并且输入层和输出层是通过全连接方式进行连接的.具体结构如下: 我们用此网络结构基于MNIST数据集(参考②)进行训 ...
- 理解dropout——本质是通过阻止特征检测器的共同作用来防止过拟合 Dropout是指在模型训练时随机让网络某些隐含层节点的权重不工作,不工作的那些节点可以暂时认为不是网络结构的一部分,但是它的权重得保留下来(只是暂时不更新而已),因为下次样本输入时它可能又得工作了
理解dropout from:http://blog.csdn.net/stdcoutzyx/article/details/49022443 http://www.cnblogs.com/torna ...
- ubuntu之路——day13 只用python的numpy在较为底层的阶段实现单隐含层神经网络
首先感谢这位博主整理的Andrew Ng的deeplearning.ai的相关作业:https://blog.csdn.net/u013733326/article/details/79827273 ...
- MLP神经网络 隐含层节点数的设置】如何设置神经网络隐藏层 的神经元个数
神经网络 隐含层节点数的设置]如何设置神经网络隐藏层 的神经元个数 置顶 2017年10月24日 14:25:07 开心果汁 阅读数:12968 版权声明:本文为博主原创文章,未经博主允许不得转 ...
随机推荐
- cx_Oracle
cx_Oracle 安装 pip install cx_Oracle 只是我没用那个安装成功过.我找了rpm 包. http://nchc.dl.sourceforge.net/project/cx- ...
- 如何让Apache不显示服务器信息
如何让Apache不显示服务器信息 Apache的默认配置是会显示服务器信息的,比如访问一个服务器上不存在的页面,Apache会返回"Not Found"的错误,这个错误页面的最下 ...
- openGLES(三)
着色器语言 着色器语言基于c/c++语言,但是还是有区别的,它不是面向对象 数据类型概述 内建的数据类型:浮点型(float).布尔型(bool).整形(int),矩阵(matrix)以及向量 ...
- JQuery操作数组函数 push(),pop(),unshift(),shift()
1.array.push() :在数组尾部添加新的元素,并返回新的数组长度. 2.array.unshift() :在数组头部添加新的元素,并返回新的数组长度.[听说IE浏览器不支持] 3.array ...
- 00087_File
1.IO概述 (1)要把数据持久化存储,就需要把内存中的数据存储到内存以外的其他持久化设备(硬盘.光盘.U盘等)上: (2)当需要把内存中的数据存储到持久化设备上这个动作称为输出(写)Output操作 ...
- 【AtCoder Regular Contest 082 F】Sandglass
[链接]点击打开链接 [题意] 你有一个沙漏. 沙漏里面总共有X单位的沙子. 沙漏分A,B上下两个部分. 沙漏从上半部分漏沙子到下半部分. 每个时间单位漏1单位的沙子. 一开始A部分在上面.然后在r1 ...
- hibernate 的映射文件快速生成:使用CodeSmith快速生成映射文件和映射类
一 CodeSmith简介 本文以表自动生成NHibernate的映射文件和映射类的实例来说明一下本软件的使用方法. CodeSmith是一种基于模板的代码生成工具,其使用类似于ASP.NET的语法来 ...
- Testin云測与ARM 战略合作:推动全球移动应用加速进入中国市场
Testin云測与ARM 战略合作:推动全球移动应用加速进入中国市场 2014/10/14 · Testin · 业界资讯 (中国北京–2014年10月14日 )全球最大的移动游戏.应用真机和用户云測 ...
- BAT面试题 - 找一个无序实数数组中的最大差值
题目描写叙述: 一个无序的实数数组a[i].要求求里面大小相邻的实数的差的最大值.比方 double a[]={1,5,4,0.2,100} 这个无序的数组,相邻的数的最大差值为100-5=95. 题 ...
- Validation failed for query for method public abstract boxfish.bean.Student boxfish.service.StudentServiceBean.find(java.lang.String)!
转自:https://blog.csdn.net/lzx925060109/article/details/40323741 1. Exception in thread "main&quo ...