先上题目

k-Multiple Free Set

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

A k-multiple free set is a set of integers where there is no pair of integers where one is equal to another integer multiplied by k. That is, there are no two integers x and y (x < y) from the set, such that y = x·k.

You're given a set of n distinct positive integers. Your task is to find the size of it's largest k-multiple free subset.

Input

The first line of the input contains two integers n and k (1 ≤ n ≤ 105, 1 ≤ k ≤ 109). The next line contains a list of n distinct positive integers a1, a2, ..., an (1 ≤ ai ≤ 109).

All the numbers in the lines are separated by single spaces.

Output

On the only line of the output print the size of the largest k-multiple free subset of {a1, a2, ..., an}.

Sample test(s)
Input
6 2
2 3 6 5 4 10
Output
3
Note

In the sample input one of the possible maximum 2-multiple free subsets is {4, 5, 6}.

  题意是给你一堆数,每个数只出现了一次,以及一个正整数倍数k,定义一种子集里面的x<y且x*k!=y,这种子集元素最多的时候个数有多大。

  这一题的分类暂时也不知道该分为什么,这种题好像曾经遇到过,可是当时好像也没有做出来,今天这一题感觉有点像是水过去的。

  做法是先对这些数进行排序,然后找出每一个数的k被在不在这些数里面,如果在,将那个数的位置记录下来,然后就从头开始扫描,遇到一个数,如果没有访问过,就访问它,看看的k倍,k*k倍,k*k*k倍···存不存在,并记录下最终从这个数按照访问它的这些倍数的个数,同时没访问完一个数,标记它已经被访问完,下次就不需要被访问了。

  那么为什么要这样做呢,解释如下:当一个数它不是某个数的k倍,同时它的k倍也不存在,那么在构成子集的时候,这个数就一定要选上;如果这个数是某个数的k倍,或者它的k倍在这些数里面的话,那它们的关系就可以用一条链来形容,因为每一个数至于它的k倍和它除以k的那个数有关,在这条链上面的其他数都与它没有关系,那我们只需要取这条链中相隔的数,就可以达到取最多数的目的。那么如果这条链的长度是偶数,那就去一半,如果是奇数,那就去平分后+1这么多的数目。

  这一题的数据量不大,可以开一个布尔数组标记某个值访问了没有,如果数据更加大,应该就要用set了。

  同时这一题的每一个数都只会出现一次,所以可以用这种方法贪心,如果是这个数出现不止一次的话,就不可以这样做了,那需要用dp。

上代码:

 #include <stdio.h>
#include <string.h>
#include <algorithm>
#define LL long long
#define MAX (100000+10)
using namespace std; typedef struct
{
LL d;
int m;
}S; S s[MAX];
int c[MAX];
bool f[MAX]; bool cmp(S x,S y){return x.d<y.d;} int finds(int l,int r,LL t)
{
while(l<=r)
{
int mid=(l+r)>>;
if(s[mid].d<t) l=mid+;
else r=mid-;
}
return l;
} void deal(int t)
{
int i;
c[t]=;
for(i=s[t].m;i!=-;i=s[i].m)
{
c[t]++;
f[i]=;
}
} void check(int n)
{
int i;
memset(c,,sizeof(c));
memset(f,,sizeof(f));
for(i=;i<n;i++)
{
if(!f[i]) deal(i);
}
} int main()
{
int i,n;
LL k,tot,M;
//freopen("data.txt","r",stdin);
scanf("%d %lld",&n,&k);
M=-;
for(i=;i<n;i++)
{
scanf("%lld",&s[i].d);
M=s[i].d>M ? s[i].d : M;
}
sort(s,s+n,cmp);
//s[n].d=M+2;
//s[n].m=-1;
for(i=;i<n;i++)
{
LL t=s[i].d*k;
s[i].m=finds(i+,n,t);
if(t!=s[s[i].m].d) s[i].m=-;
}
check(n);
tot=;
for(i=;i<n;i++)
{
if(!f[i]) tot+=((c[i]+)>>);
}
printf("%lld",tot);
return ;
}

274A

CodeForces - 274A - k-Multiple Free Set的更多相关文章

  1. Codeforces gym102152 K.Subarrays OR

    传送:http://codeforces.com/gym/102152/problem/K 题意:给定$n(n\le10^5)$个数$a_i(a_i\le10^9)$,对于任一个子数组中的数进行或操作 ...

  2. codeforces 1133E K Balanced Teams

    题目链接:http://codeforces.com/contest/1133/problem/E 题目大意: 在n个人中找到k个队伍.每个队伍必须满足最大值减最小值不超过5.求满足条件k个队伍人数的 ...

  3. Codeforces 1133E - K Balanced Teams - [DP]

    题目链接:https://codeforces.com/contest/1133/problem/C 题意: 给出 $n$ 个数,选取其中若干个数分别组成 $k$ 组,要求每组内最大值与最小值的差值不 ...

  4. codeforces 1269E K Integers (二分+树状数组)

    链接:https://codeforces.com/contest/1269/problem/E 题意:给一个序列P1,P2,P3,P4....Pi,每次可以交换两个相邻的元素,执行最小次数的交换移动 ...

  5. codeforces 1282B2. K for the Price of One (Hard Version) (dp)

    链接 https://codeforces.com/contest/1282/problem/B2 题意: 商店买东西,商店有n个物品,每个物品有自己的价格,商店有个优惠活动,当你买恰好k个东西时可以 ...

  6. Codeforces 544E K Balanced Teams (DP)

    题目: You are a coach at your local university. There are nn students under your supervision, the prog ...

  7. Codeforces Gym101502 K.Malek and Summer Semester

    K. Malek and Summer Semester   time limit per test 1.0 s memory limit per test 256 MB input standard ...

  8. Codeforces 987 K预处理BFS 3n,7n+1随机结论题/不动点逆序对 X&Y=0连边DFS求连通块数目

    A /*Huyyt*/ #include<bits/stdc++.h> #define mem(a,b) memset(a,b,sizeof(a)) #define pb push_bac ...

  9. [二分]codeforces 274A k-Multiple Free Set

    k-Multiple Free Set time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

随机推荐

  1. spring拦截器和注解处理日志操作

    整体思想:通过拦截器拦截所有的请求,处理含有自定义注解的方法,通过request得到需要的参数. 拦截器代码: package com.zktx.platform.log2; import java. ...

  2. C#可定制的数据库备份和恢复程序 (讲解流程)

    可定制的数据库备份和恢复程序 tashanzhishi [原作] 关键字 数据库 备份 恢复 出处 在我们做数据库系统的程序时,经常需要为客户做一个数据库的备份和恢复程序,特别是对于一些非专业的数据库 ...

  3. B1800 [Ahoi2009]fly 飞行棋 数学模拟

    20分钟一遍AC,大水题,我的算法比较复杂,但是好理解,就是找可以凑出来一半周长的点来暴力枚举就行了. 题干: Description 给出圆周上的若干个点,已知点与点之间的弧长,其值均为正整数,并依 ...

  4. 97. ExtJS之EditorGridPanel afteredit属性

    转自:https://zccst.iteye.com/blog/1328869 1. 之前大多用Ext.grid.GridPanel,现在需要可编辑功能,发现比以前稍复杂一些. 就是需要对指定列进行可 ...

  5. 第11课 Git GUI程序的基本功能

    11-1 Git GUI程序的基本操作

  6. Candies(差分约束系统)

    http://poj.org/problem?id=3159 思路:用O(V+ElogV)的Dijkstra算法求1到n的最短路.即用优先队列优化Dijkstra算法. #include <st ...

  7. 0420-mysql关键词/错误提示关键词

    操作关键词: 1.show //查看.展示 2.use //选择(库/表) 3.database/s //库/所有库 4.table/s //表/所有表 5.primary key //主键:不可重复 ...

  8. jorgchart,帮助你生成组织结构图的

    下载地址: http://yunpan.cn/c6pfenkmmFV2q  访问密码 8e29 演示链接: http://www.gbtags.com/gb/share/546.htm jstree. ...

  9. Java常见错误整理(一)

    1.配置完Java环境变量之后,仍然不能使用java命令. 解决方法: 如果是Windows10系统出现此问题,是因为个别Windows10系统不识别“JAVA_HOME”环境变量,将path中所有的 ...

  10. STL之map篇

    度熊所居住的 D 国,是一个完全尊重人权的国度.以至于这个国家的所有人命名自己的名字都非常奇怪.一个人的名字由若干个字符组成,同样的,这些字符的全排列的结果中的每一个字符串,也都是这个人的名字.例如, ...