Numpy的使用规则
之前安装的python版本是3.7
各种库都是自己一个一个下载安装的 很操心 各种缺功能
后来发现了anaconda
啊 真是一个好东西
简单来说 它就是一个涵盖大部分常用库的python包
一次安装终身爽
- 生成NumPy数组
# anaconda发行版 py:3.6.5
# 生成数组
import numpy as np #导入库 x=np.array([1.0,2.0,3.0])
print(x)
print(type(x)) #格式类型
输出:
[1. 2. 3.]
<class 'numpy.ndarray'>
- NumPy的算术运算
x=np.array([1.0,2.0,3.0])
y=np.array([2.0,4.0,6.0])
# 若要计算 数组元素个数需要相同
print(x+y)
print(x-y)
print(x*y)
print(x/y)
输出:
[3. 6. 9.]
[-1. -2. -3.]
[ 2. 8. 18.]
[0.5 0.5 0.5]
- NumPy的N维数组
a=np.array([[1,2],[3,4]])
print(a)
print(a.shape) #得到矩阵a的形状 长*宽
print(a.dtype) #得到矩阵a的数据类型
输出:
[[1 2]
[3 4]]
(2, 2)
int64
- 广播功能
print(a*10) #广播功能 a为2*2矩阵 10为1*1矩阵 将10扩展成为元素相同的2*2矩阵再计算
a=np.array([[1,2],[3,4]])
b=np.array([10,20])
print(a*b) #一维数组b先扩展成为二维数组 再进行计算
输出:
[[10 20]
[30 40]]
[[10 40]
[30 80]]
- 访问元素
- 索引访问
x = np.array([[30,31],[32,33],[35,36]])
print(x)
print(x[0]) #打印第一行
print(x[0][1]) #打印第一行的第二个元素
print('-')
输出:
[[30 31]
[32 33]
[35 36]]
[30 31]
31
2.for循环访问
for row in x:
print(row)
输出:
[30 31]
[32 33]
[35 36]
3.变为数组访问
x=x.flatten() #将x转换为一维数组
print(x)
print(x[np.array([0,2,4])]) #选择出索引为0,2,4的元素 这种方法利于筛选元素
输出:
[30 31 32 33 35 36]
[30 32 35]
Numpy的使用规则的更多相关文章
- [转]numpy性能优化
转自:http://blog.csdn.net/pipisorry/article/details/39087583 http://blog.csdn.net/pipisorry/article/de ...
- NumPy快速入门笔记
我正以Python作为突破口,入门机器学习相关知识.出于机器学习实践过程中的需要,我快速了解了一下NumPy这个科学计算库的使用方法.下面记录相关学习笔记. 简介 NumPy是一个科学计算库.结合Py ...
- NumPy 学习笔记(三)
NumPy 数组操作: 1.修改数组形状 a.numpy.reshape(arr, newshape, order='C') 在不改变数据的条件下修改形状 b.numpy.ndarray.flat 是 ...
- Numpy学习笔记(二)
(1)NumPy - 切片和索引 l ndarray对象中的元素遵循基于零的索引. 有三种可用的索引方法类型: 字段访问,基本切片和高级索引. l 基本切片 Python 中基本切片概念到 n 维 ...
- Numpy 数组操作
Numpy 数组操作 Numpy 中包含了一些函数用于处理数组,大概可分为以下几类: 修改数组形状 翻转数组 修改数组维度 连接数组 分割数组 数组元素的添加与删除 修改数组形状 函数 描述 resh ...
- NumPy v1.15手册汉化
NumPy参考 数组创建 零 和 一 empty(shape[, dtype, order]):返回给定形状和类型的新数组,而不初始化条目 empty_like(prototype[, dtype, ...
- Python之Numpy详细教程
NumPy - 简介 NumPy 是一个 Python 包. 它代表 “Numeric Python”. 它是一个由多维数组对象和用于处理数组的例程集合组成的库. Numeric,即 NumPy 的前 ...
- 一、Numpy库与多维数组
# Author:Zhang Yuan import numpy as np '''重点摘录: 轴的索引axis=i可以理解成是根据[]层数来判断的,0表示[],1表示[[]]... Numpy广播的 ...
- Numpy数组操作
""" Numpy 数组操作 修改数组形状 函数 描述 reshape 不改变数据的条件下修改形状 flat 数组元素迭代器 flatten 返回一份数组拷贝,对拷贝所做 ...
随机推荐
- 2、深入学习基本结构——CNN
这节课主要简单复习一下CNN 从图中例子,1.3共享参数,2.4共享. 要看明白以上参数. 后面就是举例了. 比如声音信号 下面是zero padding 下面是pooling 还可以有mass po ...
- WebService学习总结(6)——WebService常用接口
商业和贸易:1.股票行情数据 WEB 服务(支持香港.深圳.上海基金.债券和股票:支持多股票同时查询) Endpoint: http://webservice.webxml.com.cn/WebSer ...
- 从MySQL临时表谈到filesort
内部临时表的类型和产生时机相关,翻译自:http://dev.mysql.com/doc/refman/5.6/en/internal-temporary-tables.html In some ca ...
- JS中的call()(转)
1.方法定义 call方法: 语法:call([thisObj[,arg1[, arg2[, [,.argN]]]]]) 定义:调用一个对象的一个方法,以另一个对象替换当前对象. 说明: call 方 ...
- [HTML 5] aria-live
"aria-live" is a method to tell the information to the screen reader once value changed. a ...
- linux虚拟机网络设置(本机使用wiff,自己的网)
一.linux虚拟机网络设置(https://jingyan.baidu.com/album/4e5b3e1957979d91901e24f1.html?picindex=16) 选中虚拟机,点击 ...
- Gradle:Gradle入门
一.安装Gradle 1.首先确保你安装的JDK1.5或以上版本号. C:\Users\chengxiang.peng.QUNARSERVERS>java -version java ver ...
- 源码高速定位工具-qwandry
https://github.com/adamsanderson/qwandry qwandry 能高速定位到我们须要找到 库文件, 项目 的工具. Ruby中实现高速定位的方法有好多种.我知道的有三 ...
- DB-MySQL:MySQL 临时表
ylbtech-DB-MySQL:MySQL 临时表 1.返回顶部 1. MySQL 临时表 MySQL 临时表在我们需要保存一些临时数据时是非常有用的.临时表只在当前连接可见,当关闭连接时,Mysq ...
- xBIM 学习与应用系列目录
xBIM 实战04 在WinForm窗体中实现IFC模型的加载与浏览 xBIM 实战03 使用WPF技术实现IFC模型的加载与浏览 xBIM 实战02 在浏览器中加载IFC模型文件并设 ...