题目大意:给你一个序列(n<=35000),最多分不大于m块(m<=50),求每个块内不同元素的数量之和的最大值

考试的时候第一眼建图,没建出来,第二眼贪心 ,被自己hack掉了,又随手写了个dp方程,感觉可以用splay维护,发现有区间操作并可取,又发现这个方程只能用线段树维护,然后只剩40min了我没调完,而且线段树打错了......

定义f[i][j]表示以第i个数为这个块的结尾,已经分了j块的答案的最大值

很明显,sum表示不同元素数量

对于每个元素,记录一个表示数 i 上一次出现的位置,那么遍历到i的时候,能更新sum的位置只有到i-1,线段树维护区间修改!

而最大,线段树维护区间最大值!

算好空间,建立M颗线段树即可

 #include <vector>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define ll long long
#define ull unsigned long long
#define il inline
#define mod 905229641
#define N 35100
#define M 52
#define il inline
using namespace std;
//re
int n,m;
int a[N],lst[N];
int f[N][M];
struct Seg{
int ma[N<<],tag[N<<];
il void pushup(int rt){ma[rt]=max(ma[rt<<],ma[rt<<|]);}
il void pushdown(int rt){
if(tag[rt])
ma[rt<<]+=tag[rt],ma[rt<<|]+=tag[rt],
tag[rt<<]+=tag[rt],tag[rt<<|]+=tag[rt],tag[rt]=;}
void update(int L,int R,int l,int r,int rt,int w)
{
if(L>R) return;
if(L<=l&&r<=R){ma[rt]+=w;tag[rt]+=w;return;}
pushdown(rt);
int mid=(l+r)>>;
if(L<=mid) update(L,R,l,mid,rt<<,w);
if(R>mid) update(L,R,mid+,r,rt<<|,w);
pushup(rt);
}
int query(int L,int R,int l,int r,int rt)
{
if(L>R) return ;
if(L<=l&&r<=R) {return ma[rt];}
pushdown(rt);
int mid=(l+r)>>,ans=;
if(L<=mid) ans=max(query(L,R,l,mid,rt<<),ans);
if(R>mid) ans=max(query(L,R,mid+,r,rt<<|),ans);
pushup(rt);
return ans;
}
}s[M];
int main()
{
freopen("handsome.in","r",stdin);
freopen("handsome.out","w",stdout);
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
s[j-].update(lst[a[i]],i-,,n,,),
f[i][j]=s[j-].query(,i-,,n,),
s[j].update(i,i,,n,,f[i][j]);
lst[a[i]]=i;
}
int ans=;
for(int i=;i<=m;i++)
ans=max(ans,f[n][i]);
printf("%d\n",ans);
return ;
}

CF833B The Bakery (线段树+DP)的更多相关文章

  1. CF833B The Bakery 线段树,DP

    CF833B The Bakery LG传送门 线段树优化DP. 其实这是很久以前就应该做了的一道题,由于颓废一直咕在那里,其实还是挺不错的一道题. 先考虑\(O(n^2k)\)做法:设\(f[i][ ...

  2. codeforces#426(div1) B - The Bakery (线段树 + dp)

    B. The Bakery   Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought req ...

  3. Codeforces.833B.The Bakery(线段树 DP)

    题目链接 \(Description\) 有n个数,将其分为k段,每段的值为这一段的总共数字种类,问最大总值是多少 \(Solution\) DP,用\(f[i][j]\)表示当前在i 分成了j份(第 ...

  4. Tsinsen A1219. 采矿(陈许旻) (树链剖分,线段树 + DP)

    [题目链接] http://www.tsinsen.com/A1219 [题意] 给定一棵树,a[u][i]代表u结点分配i人的收益,可以随时改变a[u],查询(u,v)代表在u子树的所有节点,在u- ...

  5. HDU 3016 Man Down (线段树+dp)

    HDU 3016 Man Down (线段树+dp) Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Ja ...

  6. Codeforces Round #426 (Div. 1) B The Bakery (线段树+dp)

    B. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...

  7. CodeForces 834D The Bakery(线段树优化DP)

    Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought required ingredient ...

  8. Codeforces Round #426 (Div. 2) D The Bakery(线段树 DP)

     The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard input ...

  9. Codeforces Round #426 (Div. 2) D. The Bakery 线段树优化DP

    D. The Bakery   Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought req ...

随机推荐

  1. nmcli 静态方式添加IP地址

    [root@ansible02:/root] > ip a 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state U ...

  2. 普通androidproject转换为C/C++project之后,再还原成androidproject的解决方式

    我们在调试android程序时,可能会把androidproject转换成C/C++project,或者Add Native Support.可是,我们怎么把C/C++project还原成普通的and ...

  3. ZooKeeper分布式集群部署及问题

    ZooKeeper为分布式应用系统提供了高性能服务,在许多常见的集群服务中被广泛使用,最常见的当属HBase集群了,其他的还有Solr集群.Hadoop-2中的HA自己主动故障转移等. 本文主要介绍了 ...

  4. OC-JS交互(WebViewJavascriptBridge使用说明)

    首先确保一份已经配好功能的html文件. 1.初始化一个webview(viewdidload) UIWebView* webView = [[UIWebView alloc] initWithFra ...

  5. Android学习笔记之ProgressBar案例分析

    (1) <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns:to ...

  6. Navicat Premium 12 模型导出sql

    找了半天,终于找到导出sql了!

  7. C/C++ 工具函数 —— 大端模式和小端模式的互换

    小端模式:小在小,大在大:大端模式:小在大,大在小: uint32_t swap_endian(uint32_t val) { val = ((val << 8) & 0xFF00 ...

  8. NPAPI——实现非IE浏览器的类似ActiveX的本地程序(插件)调用

    一.Netscape Plugin Interface(NPAPI) 大致的说明可以看下官方文档Plugin 本文主要针对于JavaScript与插件交互部分做一些交流,比如用于数字证书的操作(淘宝和 ...

  9. block的一些注意事项

    1,定义block时是可以同时进行赋值的 2,block中是代码块,就是里面写的是语句,需要加分号 3,在block中,允许有多条语句 4,在带有参数的block中,声明部分参数名可以省略,但是建议写

  10. 使用右键打开Visual Code

    Windows Registry Editor Version 5.00[HKEY_CLASSES_ROOT\*\shell\Visual Code]@="Edit with Visual ...