CF833B The Bakery (线段树+DP)
题目大意:给你一个序列(n<=35000),最多分不大于m块(m<=50),求每个块内不同元素的数量之和的最大值
考试的时候第一眼建图,没建出来,第二眼贪心 ,被自己hack掉了,又随手写了个dp方程,感觉可以用splay维护,发现有区间操作并可取,又发现这个方程只能用线段树维护,然后只剩40min了我没调完,而且线段树打错了......
定义f[i][j]表示以第i个数为这个块的结尾,已经分了j块的答案的最大值
很明显,sum表示不同元素数量
对于每个元素,记录一个表示数 i 上一次出现的位置,那么遍历到i的时候,能更新sum的位置只有
到i-1,线段树维护区间修改!
而最大,线段树维护区间最大值!
算好空间,建立M颗线段树即可
#include <vector>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define ll long long
#define ull unsigned long long
#define il inline
#define mod 905229641
#define N 35100
#define M 52
#define il inline
using namespace std;
//re
int n,m;
int a[N],lst[N];
int f[N][M];
struct Seg{
int ma[N<<],tag[N<<];
il void pushup(int rt){ma[rt]=max(ma[rt<<],ma[rt<<|]);}
il void pushdown(int rt){
if(tag[rt])
ma[rt<<]+=tag[rt],ma[rt<<|]+=tag[rt],
tag[rt<<]+=tag[rt],tag[rt<<|]+=tag[rt],tag[rt]=;}
void update(int L,int R,int l,int r,int rt,int w)
{
if(L>R) return;
if(L<=l&&r<=R){ma[rt]+=w;tag[rt]+=w;return;}
pushdown(rt);
int mid=(l+r)>>;
if(L<=mid) update(L,R,l,mid,rt<<,w);
if(R>mid) update(L,R,mid+,r,rt<<|,w);
pushup(rt);
}
int query(int L,int R,int l,int r,int rt)
{
if(L>R) return ;
if(L<=l&&r<=R) {return ma[rt];}
pushdown(rt);
int mid=(l+r)>>,ans=;
if(L<=mid) ans=max(query(L,R,l,mid,rt<<),ans);
if(R>mid) ans=max(query(L,R,mid+,r,rt<<|),ans);
pushup(rt);
return ans;
}
}s[M];
int main()
{
freopen("handsome.in","r",stdin);
freopen("handsome.out","w",stdout);
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
s[j-].update(lst[a[i]],i-,,n,,),
f[i][j]=s[j-].query(,i-,,n,),
s[j].update(i,i,,n,,f[i][j]);
lst[a[i]]=i;
}
int ans=;
for(int i=;i<=m;i++)
ans=max(ans,f[n][i]);
printf("%d\n",ans);
return ;
}
CF833B The Bakery (线段树+DP)的更多相关文章
- CF833B The Bakery 线段树,DP
CF833B The Bakery LG传送门 线段树优化DP. 其实这是很久以前就应该做了的一道题,由于颓废一直咕在那里,其实还是挺不错的一道题. 先考虑\(O(n^2k)\)做法:设\(f[i][ ...
- codeforces#426(div1) B - The Bakery (线段树 + dp)
B. The Bakery Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought req ...
- Codeforces.833B.The Bakery(线段树 DP)
题目链接 \(Description\) 有n个数,将其分为k段,每段的值为这一段的总共数字种类,问最大总值是多少 \(Solution\) DP,用\(f[i][j]\)表示当前在i 分成了j份(第 ...
- Tsinsen A1219. 采矿(陈许旻) (树链剖分,线段树 + DP)
[题目链接] http://www.tsinsen.com/A1219 [题意] 给定一棵树,a[u][i]代表u结点分配i人的收益,可以随时改变a[u],查询(u,v)代表在u子树的所有节点,在u- ...
- HDU 3016 Man Down (线段树+dp)
HDU 3016 Man Down (线段树+dp) Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Ja ...
- Codeforces Round #426 (Div. 1) B The Bakery (线段树+dp)
B. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...
- CodeForces 834D The Bakery(线段树优化DP)
Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought required ingredient ...
- Codeforces Round #426 (Div. 2) D The Bakery(线段树 DP)
The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard input ...
- Codeforces Round #426 (Div. 2) D. The Bakery 线段树优化DP
D. The Bakery Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought req ...
随机推荐
- Django入门--模型系统(二):常用查询及表关系的实现
1.常用查询 模型类上的管理器: ** 模型类.objects ** (1)常用一般查询 rs = Student.objects.all() # 查询所有记录,返回Queryset print(rs ...
- 《你又怎么了我错了行了吧》【Alpha】Scrum meeting 3
第三天 日期:2019/6/16 前言: 第3次会议在女生宿舍召开 讨论了项目功能改进问题,继续代码完善和安排 1.1 今日完成任务情况以及明天任务安排 姓名 当前阶段任务 下一阶段任务 刘 佳 对已 ...
- windowbuilder01 按钮事件监听
- poj 2955 区间dp入门题
第一道自己做出来的区间dp题,兴奋ing,虽然说这题并不难. 从后向前考虑: 状态转移方程:dp[i][j]=dp[i+1][j](i<=j<len); dp[i][j]=Max(dp[i ...
- Java 学习(9):java Stream & File & IO
Java 流(Stream).文件(File)和IO Java.io 包几乎包含了所有操作输入.输出需要的类.所有这些流类代表了输入源和输出目标. Java.io 包中的流支持很多种格式,比如:基本类 ...
- Flask + mod_wsgi + Apache on Windows 部署成功(随时接受提问)
前言 说是前言,纯粹就是吐槽. 假设你赶时间.全然能够跳过这部分,我保证不会在这里隐藏不论什么实用的内容. 人上年纪后.可能冲劲不足,我花了大概两周的时间才成功的将flask部署到windows上.还 ...
- WCF:目录
ylbtech-WCF:目录 1.返回顶部 2.返回顶部 3.返回顶部 4.返回顶部 5.返回顶部 6.返回顶部 作者:ylbtech出处:http://ylbtech.c ...
- vue.js和node.js的认识
首先vue.js 是库,不是框架,不是框架,不是框架. Vue.js 使用了基于 HTML 的模版语法,允许开发者声明式地将 DOM 绑定至底层 Vue 实例的数据. Vue.js 的核心是一个允许你 ...
- MVC 全局异常处理(适用多人操作)
自定义特性: using System; using System.Collections.Generic; using System.Linq; using System.Web; using Sy ...
- BZOJ 2957 分块
思路: 记录每栋楼楼顶与原点连线的斜率 那么一栋楼可见当且仅当前面所有楼的斜率都小于这栋楼 将n栋楼分为√(0.5*n*logn)块 每一块内维护一个单调上升子序列(注意不是LCS) 比如说4 1 2 ...