BZOJ 3697/3127 采药人的路径 (点分治)
题目大意:
从前有一棵无向树,树上边权均为$0$或$1$,有一个采药人,他认为如果一条路径上边权为$0$和$1$的边数量相等,那么这条路径阴阳平衡。他想寻找一条合法的采药路径,保证阴阳平衡。然后他发现采药很累,于是乎他需要保证这条路径上有一个中转站,路径两个端点到中转站的路径都需要阴阳平衡 $n \leqslant 10^{5}$,求合法路径数
把$0$边边权变成$-1$,易发现如果一条路径阴阳平衡,那么边权总和为$0$
由于是树上路径的计数问题,考虑树分治,每次选中心作为根,设某点$x$到根的路径的边权和为$dis_{x}$
把中转站加进去会发生什么呢?
如果某个点$x$到根的路径上能设置中转站,那么根到$x$的路径上一定存在一点$y$,$dis_{y}=dis_{x}$,即$x$到$y$的路径$dis$为$0$,这个操作可以用桶实现
现在要在根统计答案了,显然每个点分为种情况,到根的路径能设置中转站和不能,用桶分别计数即可,设为$f[i][0]$和$f[i][1]$,表示$dis=i$时的方案数
发现还有$dis<0$的情况,需要额外记录一个数组$g$
那么答案就是$\sum_{i=1} f[i][0]*g[i][1]+f[i][1]*g[i][0]+f[i][1]*g[i][1]$
还要去掉不合法的情况,在当前根的每个子节点依然进行上述方法计数即可
$dis=0$的情况需要单独讨论,所有$dis=0$的路径都能两两匹配。此外,不以根节点为中转站,且$dis=0$的路径也一定合法
细节比较多
#include <cmath>
#include <vector>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N1 100010
#define M1 (N1<<1)
#define ll long long
#define inf 233333333
using namespace std; int gint()
{
int ret=,fh=;char c=getchar();
while(c<''||c>''){if(c=='-')fh=-;c=getchar();}
while(c>=''&&c<=''){ret=ret*+c-'';c=getchar();}
return ret*fh;
}
int n; struct Edge{
int to[M1],nxt[M1],val[M1],head[N1],cte;
void ae(int u,int v,int w)
{cte++;to[cte]=v,nxt[cte]=head[u],val[cte]=w,head[u]=cte;}
}E; int use[N1],mi,G,S,tsz,ma;
int sf[N1],sg[N1],ms[N1],sz[N1],dis[N1];
int f[N1][],g[N1][]; ll ans; int que[N1],tl;
//int dep[N1],fa[N1],de;
void dfs_sum(int u,int dad)
{
que[++tl]=u;
if(dis[u]>=){
if(sf[dis[u]]) f[dis[u]][]++;
else f[dis[u]][]++;
sf[dis[u]]++; ma=max(ma,dis[u]);
if(u==S) sf[]--,f[][]--;
}else{
if(sg[-dis[u]]) g[-dis[u]][]++;
else g[-dis[u]][]++;
sg[-dis[u]]++; ma=max(ma,-dis[u]);
}
for(int j=E.head[u];j;j=E.nxt[j])
{
if(E.to[j]==dad||use[E.to[j]]) continue;
dis[E.to[j]]=dis[u]+E.val[j];
dfs_sum(E.to[j],u);
}
if(dis[u]>=) sf[dis[u]]--;
else sg[-dis[u]]--;
}
void gra(int u,int dad)
{
sz[u]=; ms[u]=;
for(int j=E.head[u];j;j=E.nxt[j])
{
int v=E.to[j];
if(v==dad||use[v]) continue;
gra(v,u); sz[u]+=sz[v];
ms[u]=max(ms[u],sz[v]);
}
ms[u]=max(ms[u],tsz-sz[u]);
if(ms[u]<ms[G]) G=u;
}
void clr()
{
int x;
while(tl)
{
x=que[tl]; tl--;
if(dis[x]>=) f[dis[x]][]=f[dis[x]][]=;
else g[-dis[x]][]=g[-dis[x]][]=;
}
sg[]=sf[]=;
}
void calc(int u,int type)
{
ma=; dfs_sum(u,-);
ans+=( 1ll*f[][]*(f[][]-)/ + 1ll*f[][]*(f[][]-)/ + 1ll*f[][]*f[][] )*type;
for(int i=;i<=ma;i++)
ans+=( 1ll*f[i][]*g[i][] + 1ll*f[i][]*g[i][] + 1ll*f[i][]*g[i][])*type;
if(type==) ans+=f[][];
clr();
}
void main_dfs(int u)
{
int j,v; use[u]=; S=u; dis[u]=; calc(u,);
for(j=E.head[u];j;j=E.nxt[j])
{
v=E.to[j]; if(use[v]) continue;
G=; tsz=sz[v]; gra(v,u);
calc(v,-);
main_dfs(G);
}
} int main()
{
//freopen("t2.in","r",stdin);
int i,x,y,z;
scanf("%d",&n);
for(i=;i<n;i++)
{
x=gint(),y=gint(),z=gint();
z=((z)?:-);
E.ae(x,y,z),E.ae(y,x,z);
}
ms[]=tsz=n; G=; gra(,-); gra(G,-);
main_dfs(G);
printf("%lld\n",ans);
return ;
}
BZOJ 3697/3127 采药人的路径 (点分治)的更多相关文章
- 【BZOJ 3697】采药人的路径
题目链接: TP 题解: 调了好久233. 大概想一想就是树分,然后考虑这样路径(u,v)的特征,以根节点(root)切开,u到root的阴阳差值,和v到root巧合互为相反数,然后考虑要有一个点可作 ...
- 【BZOJ】【3697】采药人的路径&【3127】【USACO2013 Open】Yin and Yang
点分治 Orz hzwer 倒是比较好想到点分治……然而在方案统计这里,我犯了两个错误…… 1.我比较傻逼的想的是:通过儿子来更新父亲,也就是统计以x为根的子树中xxxx的路径有多少条……这样转移. ...
- 【BZOJ3697】采药人的路径 点分治
[BZOJ3697]采药人的路径 Description 采药人的药田是一个树状结构,每条路径上都种植着同种药材.采药人以自己对药材独到的见解,对每种药材进行了分类.大致分为两类,一种是阴性的,一种是 ...
- BZOJ 3697: 采药人的路径 [点分治] [我想上化学课]
传送门 题意: 路径有$-1,1$两种权值,求有多少路径满足权值和为$0$且有一个点将路径分成权值和为$0$的两段 第四节课本来想去上化学,然后快上课了这道题还没调出来.....可恶我想上化学 昨天两 ...
- BZOJ 3697: 采药人的路径 点分治
好久不做点分治的题了,正好在联赛之前抓紧复习一下. 先把边权为 $0$ 的置为 $-1$.定义几个状态:$f[dis][0/1],g[dis][0/1]$ 其中 $f$ 代表在当前遍历的子树内的答案. ...
- BZOJ3697采药人的路径——点分治
题目描述 采药人的药田是一个树状结构,每条路径上都种植着同种药材.采药人以自己对药材独到的见解,对每种药材进行了分类.大致分为两类,一种是阴性的,一种是阳性的.采药人每天都要进行采药活动.他选择的路径 ...
- BZOJ3697:采药人的路径(点分治)
Description 采药人的药田是一个树状结构,每条路径上都种植着同种药材. 采药人以自己对药材独到的见解,对每种药材进行了分类.大致分为两类,一种是阴性的,一种是阳性的. 采药人每天都要进行采药 ...
- [bzoj3697]采药人的路径——点分治
Brief Description 采药人的药田是一个树状结构,每条路径上都种植着同种药材. 采药人以自己对药材独到的见解,对每种药材进行了分类.大致分为两类,一种是阴性的,一种是阳性的. 采药人每天 ...
- 【BZOJ-3697&3127】采药人的路径&YinandYang 点分治 + 乱搞
3697: 采药人的路径 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 681 Solved: 246[Submit][Status][Discus ...
随机推荐
- Asp 日期格式化问题 沙比作者,我改过来。
Asp 日期格式化问题 投稿:mdxy-dxy 字体:[增加 减小] 类型:转载 时间:2009-06-14我要评论 asp做网站经常遇到日期格式处理问题,介绍一个有用的vbscript函数forma ...
- iOS tcpdump抓包方法(需越狱)
前提条件:机器要破解,cydia能打开 需要工具1.openssh2.tcpdump 安装工具方法:1.连接网络,打开cydia2.确认Cydia设置为开发者模式(管理->设置->开发者) ...
- UVA 12633 Super Rooks on Chessboard (生成函数+FFT)
题面传送门 题目大意:给你一张网格,上面有很多骑士,每个骑士能横着竖着斜着攻击一条直线上的格子,求没被攻击的格子的数量总和 好神奇的卷积 假设骑士不能斜着攻击 那么答案就是没被攻击的 行数*列数 接下 ...
- 【Manthan, Codefest 18 (rated, Div. 1 + Div. 2) B】Reach Median
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 将数组排序一下. 考虑中位数a[mid] 如果a[mid]==s直接输出0 如果a[mid]<s,那么我们把a[mid]改成s ...
- 【AIM Tech Round 5 (rated, Div. 1 + Div. 2) B】Unnatural Conditions
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 让a+b的和为100000000...0这样的形式就好了 这样s(a+b)=1<=m就肯定成立了(m>=1) 然后至于s ...
- [SharePoint2010开发入门经典]11、与Office集成
本章概要: 1.创建office集成解决方案使用代码或非代码形式 2.使用内容类型作为能映射到文档库的文档 3.使用InfoPath管理表单 4.使用工作流管理业务流程 5.使用office2010服 ...
- 怎样使windows上的javaWEB项目公布到Centos上
首先在windows上把项目导入到myeclipse或者eclipse(JEE)版本号上. 然后经过调试,没有错误后. 点击项目,然后右键导出(Export...) 然后选择JEE的war格式,这个是 ...
- 近200篇机器学习&深度学习资料分享
编者按:本文收集了百来篇关于机器学习和深度学习的资料,含各种文档,视频,源码等.并且原文也会不定期的更新.望看到文章的朋友能够学到很多其它. <Brief History of Machine ...
- STL之效率比較
1.vector 变长一维数组,连续存放的内存块,有保留内存.堆中分配内存: 支持[]操作,高效率的随机訪问: 在最后添加元素时,一般不须要分配内存空间,速度快:在中间或開始操作元素时要进行内存拷贝效 ...
- reactjs simple text editor
import React, { Component } from 'react' import PubSub from 'pubsub' import GlobalVars from 'globalV ...