前言

基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库)、Caffe(深度学习库)、Dlib(机器学习库)、libfacedetection(人脸检测库)、cudnn(gpu加速库)。

用到了一个开源的深度学习模型:VGG model。

最终的效果是很赞的,识别一张人脸的速度是0.039秒,而且最重要的是:精度高啊!!!

CPU:intel i5-4590

GPU:GTX 980

系统:Win 10

OpenCV版本:3.1(这个无所谓)

Caffe版本:Microsoft caffe (微软编译的Caffe,安装方便,在这里安利一波)

Dlib版本:19.0(也无所谓

CUDA版本:7.5

cudnn版本:4

libfacedetection:6月份之后的(这个有所谓,6月后出了64位版本的)

这个系列纯C++构成,有问题的各位朋同学可以直接在博客下留言,我们互相交流学习。

====================================================================

本篇是该系列的第一篇博客,介绍我如何在Visual Studio中像使用OpenCV一样使用Caffe。

思路

我们都知道在Visual Studio中使用OpenCV是非常方便的,只要配置好相关的路径,建立一个属性表就可以了。接触过Caffe的可能会知道,在Caffe的例程中并没有怎么说如何建立一个属性表,就能够使用Caffe提供的一些函数去构造程序。话说一个月前刚刚在Github上帮一个老外解决了这个问题,所以这里也写一下我的方法。

要用Caffe,就是 include 、lib 、dll,和OpenCV一样,搞好这三个即可,推荐大家配置Release版本的,所以在编译Caffe的时候,换成Release模式也编译一次。

实现

观察caffe-master的第三方程序包,毫无疑问,这个与caffe-master本文件夹都需要加上去的。



所以在属性表里,先后需要include以下这些:(路径请自行修改)

D:\caffe-master\include
D:\NugetPackages\boost.1.59.0.0\lib\native\include
D:\NugetPackages\glog.0.3.3.0\build\native\include
D:\NugetPackages\gflags.2.1.2.1\build\native\include
D:\NugetPackages\protobuf-v120.2.6.1\build\native\include
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5\include
D:\NugetPackages\OpenBLAS.0.2.14.1\lib\native\include
D:\caffe-master\include\caffe\layers
D:\NugetPackages\OpenCV.2.4.10\build\native\include
D:\NugetPackages\OpenCV.2.4.10\build\native\include\opencv
D:\NugetPackages\OpenCV.2.4.10\build\native\include\opencv2

我们可以看到,这个第三方程序包里面已经有OpenCV了,所以我们没必要把OpenCV的属性表添加。

然后,我们需要添加lib:(路径请自行修改)

D:\NugetPackages\boost_date_time-vc120.1.59.0.0\lib\native\address-model-64\lib
D:\NugetPackages\boost_filesystem-vc120.1.59.0.0\lib\native\address-model-64\lib
D:\NugetPackages\boost_system-vc120.1.59.0.0\lib\native\address-model-64\lib
D:\caffe-master\Build\x64\Release
D:\NugetPackages\boost_thread-vc120.1.59.0.0\lib\native\address-model-64\lib
D:\NugetPackages\boost_chrono-vc120.1.59.0.0\lib\native\address-model-64\lib
D:\NugetPackages\protobuf-v120.2.6.1\build\native\lib\x64\v120\Release
D:\NugetPackages\OpenCV.2.4.10\build\native\lib\x64\v120\Release
D:\NugetPackages\glog.0.3.3.0\build\native\lib\x64\v120\Debug\dynamic
D:\NugetPackages\gflags.2.1.2.1\build\native\x64\v120\dynamic\Lib
D:\NugetPackages\hdf5-v120-complete.1.8.15.2\lib\native\lib\x64
D:\NugetPackages\OpenBLAS.0.2.14.1\lib\native\lib\x64
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5\lib\x64

最后一项是CUDA的配置路径,找一下应该就可以找到。

那么我们的附加依赖项需要添加:

libcaffe.lib
libprotobuf.lib
opencv_highgui2410.lib
opencv_core2410.lib
opencv_imgproc2410.lib
libglog.lib
gflags.lib
libopenblas.dll.a
hdf5.lib
hdf5_hl.lib
cublas.lib
cublas_device.lib
cuda.lib
cudadevrt.lib
cudnn.lib
cudart.lib
cufft.lib
cudart_static.lib
cudnn_static.lib
cufftw.lib
cusparse.lib
cusolver.lib
curand.lib
nppc.lib
OpenCL.lib

对了,最后别忘了配置环境变量哟,配置完之后重启一遍:

D:\NugetPackages\gflags.2.1.2.1\build\native\x64\v120\dynamic\Lib
D:\NugetPackages\hdf5-v120-complete.1.8.15.2\lib\native\bin\x64
D:\NugetPackages\glog.0.3.3.0\build\native\bin\x64\v120\Release\dynamic
D:\NugetPackages\OpenBLAS.0.2.14.1\lib\native\bin\x64
D:\NugetPackages\gflags.2.1.2.1\build\native\x64\v120\dynamic\Lib
D:\NugetPackages\OpenCV.2.4.10\build\native\bin\x64\v120\Release

这里还是建议大家建立一个属性表,方便后面的程序添加,就像这样:



那么在做完这些之后,我们就可以在新建工程里使用Caffe的接口了,比如:



不会报错滴。

基于深度学习的人脸识别系统系列:【一】如何在Visual Studio中像使用OpenCV一样使用Caffe完结,如果在配置过程中出现了什么问题,直接留言即可。

=============================================

补充:

好吧..有人问怎么在没有GPU的情况下进行呢?(CPU_ONLY模式)

就是这样:

1、前面都和上面一样配置,在这个地方把cu开头的lib全部删掉,改成如下:

libcaffe.lib
libprotobuf.lib
opencv_highgui2410.lib
opencv_core2410.lib
opencv_imgproc2410.lib
libglog.lib
gflags.lib
libopenblas.dll.a
hdf5.lib
hdf5_hl.lib

2、运行一下,发现出现错误:



我们打开这个文件:



3、在上面这个地方我们得选择CPU模式。

加一句#define CPU_ONLY



搞定。

基于深度学习的人脸识别系统(Caffe+OpenCV+Dlib)【一】如何配置caffe属性表的更多相关文章

  1. 基于深度学习的人脸识别系统(Caffe+OpenCV+Dlib)【三】VGG网络进行特征提取

    前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...

  2. 基于深度学习的人脸识别系统(Caffe+OpenCV+Dlib)【二】人脸预处理

    前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...

  3. 基于深度学习的人脸识别系统系列(Caffe+OpenCV+Dlib)——【四】使用CUBLAS加速计算人脸向量的余弦距离

    前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...

  4. 基于深度学习的人脸识别系统Win10 环境安装与配置(python+opencv+tensorflow)

    一.需要下载的软件.环境及文件 (由于之前见识短浅,对Anaconda这个工具不了解,所以需要对安装过程做出改变:就是Python3.7.2的下载安装是可选的,因为Anaconda已经为我们解决Pyt ...

  5. 基于深度学习的人脸性别识别系统(含UI界面,Python代码)

    摘要:人脸性别识别是人脸识别领域的一个热门方向,本文详细介绍基于深度学习的人脸性别识别系统,在介绍算法原理的同时,给出Python的实现代码以及PyQt的UI界面.在界面中可以选择人脸图片.视频进行检 ...

  6. 基于深度学习的中文语音识别系统框架(pluse)

    目录 声学模型 GRU-CTC DFCNN DFSMN 语言模型 n-gram CBHG 数据集 本文搭建一个完整的中文语音识别系统,包括声学模型和语言模型,能够将输入的音频信号识别为汉字. 声学模型 ...

  7. 【OCR技术系列之四】基于深度学习的文字识别(3755个汉字)

    上一篇提到文字数据集的合成,现在我们手头上已经得到了3755个汉字(一级字库)的印刷体图像数据集,我们可以利用它们进行接下来的3755个汉字的识别系统的搭建.用深度学习做文字识别,用的网络当然是CNN ...

  8. 【OCR技术系列之四】基于深度学习的文字识别

    上一篇提到文字数据集的合成,现在我们手头上已经得到了3755个汉字(一级字库)的印刷体图像数据集,我们可以利用它们进行接下来的3755个汉字的识别系统的搭建.用深度学习做文字识别,用的网络当然是CNN ...

  9. 基于深度学习的回声消除系统与Pytorch实现

    文章作者:凌逆战 文章代码(pytorch实现):https://github.com/LXP-Never/AEC_DeepModel 文章地址(转载请指明出处):https://www.cnblog ...

随机推荐

  1. 最近遇到的若干Web前端问题:disable和readonly,JqueryEasyUI,KindEditor

    最近项目中用到了Jquery Easyui和KindEditor等框架组件,问题真不少啊~  一些看起来很简单理所当然的事情,竟然花费了不少时间,才解决好~  1.readonly和disable的区 ...

  2. 70.nodejs操作mongodb

    转自:https://www.cnblogs.com/whoamme/p/3467374.html 首先安装nodejs mongodb npm install mongodb var mongodb ...

  3. css3.0滚动条的优化

    .ass_showFriends{width: 93%;height: 8.35rem;overflow-y: auto;} .ass_showFriends::-webkit-scrollbar{w ...

  4. POJ 2079 Triangle 旋转卡壳求最大三角形

    求点集中面积最大的三角形...显然这个三角形在凸包上... 但是旋转卡壳一般都是一个点卡另一个点...这种要求三角形的情况就要枚举底边的两个点 卡另一个点了... 随着底边点的递增, 最大点显然是在以 ...

  5. JAVA使用YUI压缩CSS/JS

    前言 JS/CSS文件压缩我们经常会用到,可以在网上找在线压缩或者本地直接使用,我这里使用的是yahoo开源组件YUI Compressor.首先介绍一下YUI Compressor,它是一个用来压缩 ...

  6. cat---查看文件内容

  7. dig---域名查询

    dig命令是常用的域名查询工具,可以用来测试域名系统工作是否正常. QUESTION SECTION 这部分是提问,显示你要查询的域名 ANSWER SECTION 即答案,显示查询到的域名对应的IP ...

  8. sim800c GPRS模块的透传模式

    一.透传模式 基于sim800c GPRS模块在建立TCP/IP连接情况下,可以设置进入透传模式,用来接收和发送数据,一旦进入即从串口收到的数据将被打包,然后发送.接收同理. 注意在透传模式下所有的A ...

  9. [leetcode] Palindrome Number(不使用额外空间)

    本来推断回文串是一件非常easy的事情,仅仅须要反转字符串后在与原字符串相比較就可以.这道题目明白说明不能使用额外的空间.那么使用将其分解连接成字符串的方法便不是可行的.仅仅好採用数学的方式: 每次取 ...

  10. XMPP开发之从零開始

    对于server的搭建和设置.我在这里就不再多说了.有好多前辈已经帮大家攻克了.能够參考下这篇博客 XMPPserver配置 我依照这个博客配置好了,server后,然后在网上參照代码写了一个小的de ...