The Unique MST
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 23180   Accepted: 8235

Description

Given a connected undirected graph, tell if its minimum spanning tree is unique. 



Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties: 

1. V' = V. 

2. T is connected and acyclic. 



Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all
the edges in E'. 

Input

The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a
triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

Output

For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

Sample Input

2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2

Sample Output

3
Not Unique!

Source

对于最小生成树(能够用kruskal和prime算法求得,在这里我是用kruskal求得,假设不会请自己百度。),边的权值的和最小称为最小生成树。

而次小生成树就是除了最小生成树外的最小生成树。并且全部的次小生成树都是通过最小生成树的换边得到的。

所以难点就是怎样换边。

对于怎样换边:

1.先求出最小生成树,值为x。

2.一一枚举加入不在生成树上的边(这时候一定形成了一个环)

3.寻找环上的(最小生成树上的边)权值最大值与你所加入不在生成树上的边的权值比較,所得到的差值为min。

因为是一一枚举加入边,min有多个,求出最小的哪一个,所以次小生成树就为x+min。

昨天尽管把这道题A了,但是看到讨论区的測试数据发现自己又一个没有过,然而却AC了。然后今天起床就来研究研究。

发现我的程序是在找最大值。但是假设一个环有分支,它还会去找分支里面的最大值。于是就又优化了一下。

用的优先队列。

先附上第一次做的代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
struct node
{
int a,b,cost;
}c[10005];
int fa[105],tree[105][105],vis[10005],vis_tree[105];//vis数组是对m对数据的标记vis_tree是对最小生成树标记
int n,m,max1;
bool cmp(node x,node y)
{
if(x.cost<y.cost)
return true;
else
return false;
}
int find(int x)//寻找根
{
if(fa[x]!=x) fa[x]=find(fa[x]);
return fa[x];
}
void sec_tree(int a,int b)//查找生成树某条边的最大值(我在这里做的是错误的。假设形成的环有分支,也会查找)
{
vis_tree[a]=1;
if(a==b)
return ;
for(int i=1;i<=n;i++)
if(tree[a][i]&&!vis_tree[i])
{
if(max1<tree[a][i])
max1=tree[a][i];
sec_tree(i,b);
}
}
int main()
{
int ncase;
scanf("%d",&ncase);
while(ncase--)
{
memset(vis,0,sizeof(vis));
memset(tree,0,sizeof(tree));
memset(&c,0,sizeof(&c));
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++)
fa[i]=i;
for(int i=0;i<m;i++)
scanf("%d %d %d",&c[i].a,&c[i].b,&c[i].cost);
sort(c,c+m,cmp);
int sum=0;
for(int i=0;i<m;i++)//kruskal算法求最小生成树
{
int x=find(c[i].a);
int y=find(c[i].b);
if(x!=y)
{
fa[x]=y,sum+=c[i].cost;
tree[x][y]=tree[y][x]=c[i].cost;
vis[i]=1;
}
}
int flag=0;
for(int i=0;i<m;i++)
{
if(!vis[i])//不在生成树中的边和形成的环的最大值比較。假设相等,MST不唯一
{
max1=-1;
memset(vis_tree,0,sizeof(vis_tree));
sec_tree(c[i].a,c[i].b);
if(max1==c[i].cost)
{
flag=1;
break;
}
}
}
if(!flag)
printf("%d\n",sum);
else
printf("Not Unique!\n");
}
}

这是优化后的代码。凝视和上面一样。就一个地方不同:

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
using namespace std;
struct node1
{
int a,b,cost;
friend bool operator<(node1 x,node1 y )
{
return x.cost<y.cost;
}
};
priority_queue<node1>s;
struct node
{
int a,b,cost;
}c[10005];
int fa[105],tree[105][105],vis[10005],vis_tree[105];
int n,m,max1,flag1;
bool cmp1(node x,node y)
{
if(x.cost<y.cost)
return true;
else
return false;
}
int find(int x)
{
if(fa[x]!=x) fa[x]=find(fa[x]);
return fa[x];
}
void sec_tree(int a,int b)
{
node1 temp;
vis_tree[a]=1;
if(a==b)//假设找到a=b,标记一下
{
flag1=1;
}
for(int i=1;i<=n;i++)
if(tree[a][i]&&!vis_tree[i])
{
temp.a=a,temp.b=i,temp.cost=tree[a][i];
s.push(temp);
if(!flag1)//就是在这里和上面不同,假设找不到a=b,那么就把曾经的恢复
s.pop(),vis_tree[i]=0,sec_tree(i,b);
}
}
int main()
{
int ncase;
scanf("%d",&ncase);
while(ncase--)
{
memset(vis,0,sizeof(vis));
memset(tree,0,sizeof(tree));
memset(&c,0,sizeof(&c));
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++)
fa[i]=i;
for(int i=0;i<m;i++)
scanf("%d %d %d",&c[i].a,&c[i].b,&c[i].cost);
sort(c,c+m,cmp1);
int sum=0;
for(int i=0;i<m;i++)
{
int x=find(c[i].a);
int y=find(c[i].b);
if(x!=y)
{
fa[x]=y,sum+=c[i].cost;
tree[x][y]=tree[y][x]=c[i].cost;
vis[i]=1;
}
}
int flag=0;
for(int i=0;i<m;i++)
{
if(!vis[i])
{
int flag1=0;
while(!s.empty())
s.pop();
memset(vis_tree,0,sizeof(vis_tree));
sec_tree(c[i].a,c[i].b);
node1 temp;
temp=s.top();
if(temp.cost==c[i].cost)
{
flag=1;
break;
}
}
}
if(!flag)
printf("%d\n",sum);
else
printf("Not Unique!\n");
}
}

poj1679 The Unique MST(判定次小生成树)的更多相关文章

  1. POJ-1679 The Unique MST(次小生成树、判断最小生成树是否唯一)

    http://poj.org/problem?id=1679 Description Given a connected undirected graph, tell if its minimum s ...

  2. POJ1679 The Unique MST 【次小生成树】

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 20421   Accepted: 7183 D ...

  3. POJ1679 The Unique MST【次小生成树】

    题意: 判断最小生成树是否唯一. 思路: 首先求出最小生成树,记录现在这个最小生成树上所有的边,然后通过取消其中一条边,找到这两点上其他的边形成一棵新的生成树,求其权值,通过枚举所有可能,通过这些权值 ...

  4. POJ1679 The Unique MST(次小生成树)

    可以依次枚举MST上的各条边并删去再求最小生成树,如果结果和第一次求的一样,那就是最小生成树不唯一. 用prim算法,时间复杂度O(n^3). #include<cstdio> #incl ...

  5. The Unique MST(次小生成树)

    Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 22335   Accepted: 7922 Description Give ...

  6. POJ1679The Unique MST(次小生成树)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 25203   Accepted: 8995 D ...

  7. poj 1679 The Unique MST【次小生成树】

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 24034   Accepted: 8535 D ...

  8. POJ 1679:The Unique MST(次小生成树&amp;&amp;Kruskal)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 19941   Accepted: 6999 D ...

  9. poj 1679 The Unique MST 【次小生成树】【模板】

    题目:poj 1679 The Unique MST 题意:给你一颗树,让你求最小生成树和次小生成树值是否相等. 分析:这个题目关键在于求解次小生成树. 方法是,依次枚举不在最小生成树上的边,然后加入 ...

  10. POJ 1679 The Unique MST (次小生成树)题解

    题意:构成MST是否唯一 思路: 问最小生成树是否唯一.我们可以先用Prim找到一棵最小生成树,然后保存好MST中任意两个点i到j的这条路径中的最大边的权值Max[i][j],如果我们能找到一条边满足 ...

随机推荐

  1. 【剑指offer】Q25:二叉树中和为某一值的路径

    说明:最烦的就是看别人的博客,题解里直接上代码,一行分析都没有.只是这个题... class BTNode(): def __init__(self, val = -1): self.val = va ...

  2. hdoj-1421-搬寝室【DP】

    搬寝室 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submis ...

  3. jquery16 DOM操作 : 添加 删除 获取 包装 DOM筛选

    <!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type" content ...

  4. amaze ui响应式辅助

    amaze ui响应式辅助 响应式辅助 就是不同的显示屏幕,或者手机的横竖屏,你可以控制栏目的显影,还是挺有帮助的 视口大小 .am-[show|hide]-[sm|md|lg][-up|-down| ...

  5. 企业实战之部署Solarwinds Network八部众

    企业实战之部署Solarwinds Network 网管系统八部众 Orion Network Performance Monitor是全面的带宽性能监控和故障管理软件,能监控并收集来自路由器.交换机 ...

  6. notepad++go语法高亮文件

    notepad++go语法高亮文件 下载 右键另存为下载后在语言栏中的自定义面板中直接导入,重启即可

  7. HDU 1576 A/B 数论水题

    http://acm.hdu.edu.cn/showproblem.php?pid=1576 写了个ex_gcd的模板...太蠢导致推了很久的公式 这里推导一下: 因为 1 = BX + 9973Y ...

  8. Java生产者与消费者(下)

    本文来自http://blog.csdn.net/liuxian13183/ ,引用必须注明出处! 上一讲我们让消费者和生产者都各停1毫秒,实际上大多并不是这样的.第二讲,我们讲一个极端的例子和一个正 ...

  9. 优化HTML代码的多种技巧

    怎样提升Web页面的性能,非常多开发者从多个方面来下手如JavaScript.图像优化.server配置,文件压缩或是调整CSS. 非常显然HTML 已经达到了一个瓶颈.虽然它是开发Web 界面必备的 ...

  10. linux下uboot kernel操作cpu寄存器

    大多数的内核里面都有会对GPIO的操作,而且内核里面对GPIO进行配置也很方便,要什么功能就配置成什么就可以了. 还有一些寄存器是内核没有配置到的,但是我们要操作怎么办,内核里面也定义了相关的接口函数 ...