poj1679 The Unique MST(判定次小生成树)
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 23180 | Accepted: 8235 |
Description
Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties:
1. V' = V.
2. T is connected and acyclic.
Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all
the edges in E'.
Input
triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.
Output
Sample Input
2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2
Sample Output
3
Not Unique!
Source
对于最小生成树(能够用kruskal和prime算法求得,在这里我是用kruskal求得,假设不会请自己百度。),边的权值的和最小称为最小生成树。
而次小生成树就是除了最小生成树外的最小生成树。并且全部的次小生成树都是通过最小生成树的换边得到的。
所以难点就是怎样换边。
对于怎样换边:
1.先求出最小生成树,值为x。
2.一一枚举加入不在生成树上的边(这时候一定形成了一个环)
3.寻找环上的(最小生成树上的边)权值最大值与你所加入不在生成树上的边的权值比較,所得到的差值为min。
因为是一一枚举加入边,min有多个,求出最小的哪一个,所以次小生成树就为x+min。
昨天尽管把这道题A了,但是看到讨论区的測试数据发现自己又一个没有过,然而却AC了。然后今天起床就来研究研究。
。
。
发现我的程序是在找最大值。但是假设一个环有分支,它还会去找分支里面的最大值。于是就又优化了一下。
用的优先队列。
先附上第一次做的代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
struct node
{
int a,b,cost;
}c[10005];
int fa[105],tree[105][105],vis[10005],vis_tree[105];//vis数组是对m对数据的标记vis_tree是对最小生成树标记
int n,m,max1;
bool cmp(node x,node y)
{
if(x.cost<y.cost)
return true;
else
return false;
}
int find(int x)//寻找根
{
if(fa[x]!=x) fa[x]=find(fa[x]);
return fa[x];
}
void sec_tree(int a,int b)//查找生成树某条边的最大值(我在这里做的是错误的。假设形成的环有分支,也会查找)
{
vis_tree[a]=1;
if(a==b)
return ;
for(int i=1;i<=n;i++)
if(tree[a][i]&&!vis_tree[i])
{
if(max1<tree[a][i])
max1=tree[a][i];
sec_tree(i,b);
}
}
int main()
{
int ncase;
scanf("%d",&ncase);
while(ncase--)
{
memset(vis,0,sizeof(vis));
memset(tree,0,sizeof(tree));
memset(&c,0,sizeof(&c));
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++)
fa[i]=i;
for(int i=0;i<m;i++)
scanf("%d %d %d",&c[i].a,&c[i].b,&c[i].cost);
sort(c,c+m,cmp);
int sum=0;
for(int i=0;i<m;i++)//kruskal算法求最小生成树
{
int x=find(c[i].a);
int y=find(c[i].b);
if(x!=y)
{
fa[x]=y,sum+=c[i].cost;
tree[x][y]=tree[y][x]=c[i].cost;
vis[i]=1;
}
}
int flag=0;
for(int i=0;i<m;i++)
{
if(!vis[i])//不在生成树中的边和形成的环的最大值比較。假设相等,MST不唯一
{
max1=-1;
memset(vis_tree,0,sizeof(vis_tree));
sec_tree(c[i].a,c[i].b);
if(max1==c[i].cost)
{
flag=1;
break;
}
}
}
if(!flag)
printf("%d\n",sum);
else
printf("Not Unique!\n");
}
}
这是优化后的代码。凝视和上面一样。就一个地方不同:
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
using namespace std;
struct node1
{
int a,b,cost;
friend bool operator<(node1 x,node1 y )
{
return x.cost<y.cost;
}
};
priority_queue<node1>s;
struct node
{
int a,b,cost;
}c[10005];
int fa[105],tree[105][105],vis[10005],vis_tree[105];
int n,m,max1,flag1;
bool cmp1(node x,node y)
{
if(x.cost<y.cost)
return true;
else
return false;
}
int find(int x)
{
if(fa[x]!=x) fa[x]=find(fa[x]);
return fa[x];
}
void sec_tree(int a,int b)
{
node1 temp;
vis_tree[a]=1;
if(a==b)//假设找到a=b,标记一下
{
flag1=1;
}
for(int i=1;i<=n;i++)
if(tree[a][i]&&!vis_tree[i])
{
temp.a=a,temp.b=i,temp.cost=tree[a][i];
s.push(temp);
if(!flag1)//就是在这里和上面不同,假设找不到a=b,那么就把曾经的恢复
s.pop(),vis_tree[i]=0,sec_tree(i,b);
}
}
int main()
{
int ncase;
scanf("%d",&ncase);
while(ncase--)
{
memset(vis,0,sizeof(vis));
memset(tree,0,sizeof(tree));
memset(&c,0,sizeof(&c));
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++)
fa[i]=i;
for(int i=0;i<m;i++)
scanf("%d %d %d",&c[i].a,&c[i].b,&c[i].cost);
sort(c,c+m,cmp1);
int sum=0;
for(int i=0;i<m;i++)
{
int x=find(c[i].a);
int y=find(c[i].b);
if(x!=y)
{
fa[x]=y,sum+=c[i].cost;
tree[x][y]=tree[y][x]=c[i].cost;
vis[i]=1;
}
}
int flag=0;
for(int i=0;i<m;i++)
{
if(!vis[i])
{
int flag1=0;
while(!s.empty())
s.pop();
memset(vis_tree,0,sizeof(vis_tree));
sec_tree(c[i].a,c[i].b);
node1 temp;
temp=s.top();
if(temp.cost==c[i].cost)
{
flag=1;
break;
}
}
}
if(!flag)
printf("%d\n",sum);
else
printf("Not Unique!\n");
}
}
poj1679 The Unique MST(判定次小生成树)的更多相关文章
- POJ-1679 The Unique MST(次小生成树、判断最小生成树是否唯一)
http://poj.org/problem?id=1679 Description Given a connected undirected graph, tell if its minimum s ...
- POJ1679 The Unique MST 【次小生成树】
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 20421 Accepted: 7183 D ...
- POJ1679 The Unique MST【次小生成树】
题意: 判断最小生成树是否唯一. 思路: 首先求出最小生成树,记录现在这个最小生成树上所有的边,然后通过取消其中一条边,找到这两点上其他的边形成一棵新的生成树,求其权值,通过枚举所有可能,通过这些权值 ...
- POJ1679 The Unique MST(次小生成树)
可以依次枚举MST上的各条边并删去再求最小生成树,如果结果和第一次求的一样,那就是最小生成树不唯一. 用prim算法,时间复杂度O(n^3). #include<cstdio> #incl ...
- The Unique MST(次小生成树)
Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 22335 Accepted: 7922 Description Give ...
- POJ1679The Unique MST(次小生成树)
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 25203 Accepted: 8995 D ...
- poj 1679 The Unique MST【次小生成树】
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 24034 Accepted: 8535 D ...
- POJ 1679:The Unique MST(次小生成树&&Kruskal)
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 19941 Accepted: 6999 D ...
- poj 1679 The Unique MST 【次小生成树】【模板】
题目:poj 1679 The Unique MST 题意:给你一颗树,让你求最小生成树和次小生成树值是否相等. 分析:这个题目关键在于求解次小生成树. 方法是,依次枚举不在最小生成树上的边,然后加入 ...
- POJ 1679 The Unique MST (次小生成树)题解
题意:构成MST是否唯一 思路: 问最小生成树是否唯一.我们可以先用Prim找到一棵最小生成树,然后保存好MST中任意两个点i到j的这条路径中的最大边的权值Max[i][j],如果我们能找到一条边满足 ...
随机推荐
- java对象和json数据转换实现方式1-使用json-lib实现
測试代码: package com.yanek.util.json; import java.util.ArrayList; import java.util.List; import net.sf. ...
- hdu5305 Friends(dfs+map/hash)
题目:pid=5305">http://acm.hdu.edu.cn/showproblem.php?pid=5305 题意:给定N个人和M条朋友关系,是朋友关系的两个人之间有两种联系 ...
- opencv-图像金字塔
图像金字塔 目标 原理摘自:http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/imgproc/pyramids/pyramids. ...
- 关于router-link的传参以及参数的传递
1.路径:http://localhost:8081/#/test?name=1 <router-link :to="{path:'/test',query: {name: id}}& ...
- 基于Linux平台Softimage XSI 演示
2009年底上映的<阿凡达>是电影特效的巅峰之作,就在本月初上映的变形金刚3每次观看之后看得眼花缭乱总能让我热血沸腾,要是自己能做出那样的特效该多好,Linux下研究Maya已经有一段日 ...
- inode与ln命令
inode可以看: http://www.cnblogs.com/itech/archive/2012/05/15/2502284.html 每个inode节点的大小,一般是128字节或256字节.i ...
- android抓取各种log的方法
1.logcat (四类log buffer是main,radio.system.events) adb wait-for-device logcat adb logcat -v time > ...
- worktools-git 工具的使用总结(2)
1.创建分支 git branch son parent //创建分支,是在master 分支的基础上创建 :~/myGit$ git st # On branch master nothing to ...
- 24.Node.js Stream(流)
转自:http://www.runoob.com/nodejs/nodejs-stream.html Stream 是一个抽象接口,Node 中有很多对象实现了这个接口.例如,对http 服务器发起请 ...
- 11.使用 package.json
转自:http://www.runoob.com/nodejs/nodejs-express-framework.html package.json 位于模块的目录下,用于定义包的属性.接下来让我们来 ...