标题效果:定整N(N <= 1e7),乞讨1<=x,y<=N和Gcd(x,y)素数的数(x,y)有多少.、

思考:推,。

建立gcd(x,y) = p,然后,x / p与y / p互素

问题就转化成了N / p中有多少个数互质,然后累加就能够了.

=>对于随意a,b,a <= N / p,b <= N / p,且a与b互质

=>gcd(a,b) == 1

如今问题就非常明显了。看到这个形式就非常easy想到欧拉函数。求一下phi,算一下前缀和,累加。

注意这里求欧拉一定要线性的,1qw的数据。nloglogn都非常悬。

CODE:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define MAX 10000010
using namespace std; bool not_prime[MAX];
int prime[MAX],primes;
long long phi[MAX],ans; int n; inline void Eratosthenes(); int main()
{
cin >> n;
Eratosthenes();
for(int i = 2;i <= n; ++i)
phi[i] += phi[i - 1];
for(int i = 1;i <= primes; ++i)
ans += phi[n / prime[i]];
cout << (ans << 1) - primes << endl;
return 0;
} inline void Eratosthenes()
{
phi[1] = 1;
for(int i = 2;i <= n; ++i) {
if(!not_prime[i])
prime[++primes] = i,phi[i] = i - 1;
for(int j = 1;j <= primes && prime[j] * i <= n; ++j) {
not_prime[i * prime[j]] = true;
if(i % prime[j] == 0) {
phi[i * prime[j]] = phi[i] * prime[j];
break;
}
else phi[i * prime[j]] = phi[i] * (prime[j] - 1);
}
}
}

版权声明:本文博主原创文章。博客,未经同意不得转载。

BZOJ 2818 Gcd 线性欧拉筛(Eratosthenes银幕)的更多相关文章

  1. BZOJ 2818 Gcd 线性欧拉

    题意:链接 方法:线性欧拉 解析: 首先列一下表达式 gcd(x,y)=z(z是素数而且x,y<=n). 然后我们能够得到什么呢? gcd(x/z,y/z)=1; 最好还是令y>=x 则能 ...

  2. bzoj 2818 gcd 线性欧拉函数

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description 给定整数N,求1< ...

  3. bzoj 2818 GCD 数论 欧拉函数

    bzoj[2818]Gcd Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Samp ...

  4. BZOJ 2818 GCD 【欧拉函数 || 莫比乌斯反演】

    传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=2818 2818: Gcd Time Limit: 10 Sec  Memory Limit ...

  5. bzoj 2818 Gcd(欧拉函数 | 莫比乌斯反演)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2818 [题意] 问(x,y)为质数的有序点对的数目. [思路一] 定义f[i]表示i之 ...

  6. BZOJ 2818 GCD(欧拉函数)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37161 题意:gcd(x, y) = 质数, 1 <= x, ...

  7. POJ2909_Goldbach's Conjecture(线性欧拉筛)

    Goldbach's Conjecture: For any even number n greater than or equal to 4, there exists at least one p ...

  8. 【BZOJ】2818: Gcd(欧拉函数+质数)

    题目 传送门:QWQ 分析 仪仗队 呃,看到题后感觉很像上面的仪仗队. 仪仗队求的是$ gcd(a,b)=1 $ 本题求的是$ gcd(a,b)=m $ 其中m是质数 把 $ gcd(a,b)=1 $ ...

  9. hdu3572线性欧拉筛

    用线性筛来筛,复杂度O(n) #include<bits/stdc++.h> #include<ext/rope> #define fi first #define se se ...

随机推荐

  1. [D3] Build a Line Chart with D3 v4

    Line charts are often used to plot temporal data, like a stock price over time. In this lesson we’ll ...

  2. Codeforces Round 363 Div. 1 (A,B,C,D,E,F)

    Codeforces Round 363 Div. 1 题目链接:## 点击打开链接 A. Vacations (1s, 256MB) 题目大意:给定连续 \(n\) 天,每天为如下四种状态之一: 不 ...

  3. LeetCode Algorithm 06_ZigZag Conversion

    The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like ...

  4. (转) 25个必须记住的SSH命令

    转自:http://www.cnblogs.com/weafer/archive/2011/06/10/2077852.html OpenSSH是SSH连接工具的免费版本.telnet,rlogin和 ...

  5. java中String\十六进制String\byte[]之间相互转换函数

    java二进制,字节数组,字符,十六进制,BCD编码转换2007-06-07 00:17/** *//** * 把16进制字符串转换成字节数组 * @param hex * @return */ pu ...

  6. Android利用AlarmManager执行定时任务

    Android中的AlarmManager功能很强大,它是一个全局定时器,可以在指定时间或者指定周期启动其他组件(包括Activity.Service.BroadcastReceiver). 使用Al ...

  7. codeforces 571B--Minimization(贪心+dp)

    D. Minimization time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...

  8. WIFI 状态栏显示的wifi信号强度与wifisetting列表不一致

    [DESCRIPTION] 状态栏显示的wifi信号强度与wifisetting列表不一致(不同步) [ANALYSIS] 1.apk都是接收RSSI_CHANGED intent,并调用WifiMa ...

  9. oracle数据库未打开解决的方法

    Microsoft Windows [版本号 6.1.7601] 版权全部 (c) 2009 Microsoft Corporation.保留全部权利. C:\Users\Administrator& ...

  10. Linux与Windows间使用git

    Linux与Windows间使用git Linux上架设git服务器,windows可以使用git从Linux上拉取/上传数据 windows使用工具:Git for Windows Linux上的用 ...