Sum of Medians
3 seconds
256 megabytes
In one well-known algorithm of finding the k-th order statistics we should divide all elements into groups of five consecutive elements and find the median of each five. A median is called the middle element of a sorted array (it's the third largest element for a group of five). To increase the algorithm's performance speed on a modern video card, you should be able to find a sum of medians in each five of the array.
A sum of medians of a sorted k-element set S = {a1, a2, ..., ak}, where a1 < a2 < a3 < ... < ak, will be understood by as
The operator stands for taking the remainder, that is stands for the remainder of dividing x by y.
To organize exercise testing quickly calculating the sum of medians for a changing set was needed.
The first line contains number n (1 ≤ n ≤ 105), the number of operations performed.
Then each of n lines contains the description of one of the three operations:
- add x — add the element x to the set;
- del x — delete the element x from the set;
- sum — find the sum of medians of the set.
For any add x operation it is true that the element x is not included in the set directly before the operation.
For any del x operation it is true that the element x is included in the set directly before the operation.
All the numbers in the input are positive integers, not exceeding 109.
For each operation sum print on the single line the sum of medians of the current set. If the set is empty, print 0.
Please, do not use the %lld specificator to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams (also you may use the %I64d specificator).
6
add 4
add 5
add 1
add 2
add 3
sum
3
14
add 1
add 7
add 2
add 5
sum
add 6
add 8
add 9
add 3
add 4
add 10
sum
del 1
sum
5
11
13
分析:单点修改+区间查询下标i%5=3的值的和;
暴力修改查询肯定慢了,所以考虑线段树;
怎么查询i%5=3的和呢?这是难点;
假设ret[rt][i]代表rt区间下标%5=i的和,sum[rt]代表rt区间的个数;
考虑到了rt节点,ret[rt][i](rt区间内下标%5=i的和)显然可以加上ret[lson][i],那么rson呢?
这个可以推一推,结论是加上ret[rson][(i-sum[lson]%5+5)%5];
所以线段树单点更新即可;
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <bitset>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#define rep(i,m,n) for(i=m;i<=n;i++)
#define mod 1000000007
#define inf 0x3f3f3f3f
#define vi vector<int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
#define pii pair<int,int>
#define sys system("pause")
const int maxn=1e5+;
const int N=1e3+;
using namespace std;
int id(int l,int r){return l+r|l!=r;}
ll gcd(ll p,ll q){return q==?p:gcd(q,p%q);}
ll qpow(ll p,ll q){ll f=;while(q){if(q&)f=f*p;p=p*p;q>>=;}return f;}
int n,m,k,t,sum[maxn<<],a[maxn],b[maxn],c[maxn],cnt;
ll ret[maxn<<][];
char op[];
void upd(int x,int y,int pos,int l,int r,int rt)
{
int i;
if(l==r)
{
sum[rt]+=x;
ret[rt][]+=y;
return;
}
int mid=l+r>>;
if(pos<=mid)upd(x,y,pos,l,mid,id(l,mid));
else upd(x,y,pos,mid+,r,id(mid+,r));
rep(i,,)ret[rt][i]=ret[id(l,mid)][i]+ret[id(mid+,r)][(i-sum[id(l,mid)]%+)%];
sum[rt]=sum[id(l,mid)]+sum[id(mid+,r)];
}
int main()
{
int i,j;
scanf("%d",&n);
rep(i,,n)
{
scanf("%s",op);
if(op[]=='s')a[i]=;
else if(op[]=='d')scanf("%d",&b[i]),a[i]=;
else scanf("%d",&b[i]),a[i]=,c[++cnt]=b[i];
}
sort(c+,c+cnt+);
cnt=unique(c+,c+cnt+)-c-;
rep(i,,n)
{
if(a[i]==)
{
upd(,b[i],lower_bound(c+,c+cnt+,b[i])-c,,cnt,id(,cnt));
}
else if(a[i]==)
{
upd(-,-b[i],lower_bound(c+,c+cnt+,b[i])-c,,cnt,id(,cnt));
}
else printf("%lld\n",ret[id(,cnt)][]);
}
return ;
}
Sum of Medians的更多相关文章
- codeforces 85D D. Sum of Medians 线段树
D. Sum of Medians time limit per test 3 seconds memory limit per test 256 megabytes input standard i ...
- Codeforces 85D Sum of Medians
传送门 D. Sum of Medians time limit per test 3 seconds memory limit per test 256 megabytes input standa ...
- Yandex.Algorithm 2011 Round 1 D. Sum of Medians 线段树
题目链接: Sum of Medians Time Limit:3000MSMemory Limit:262144KB 问题描述 In one well-known algorithm of find ...
- 数据结构(线段树):CodeForces 85D Sum of Medians
D. Sum of Medians time limit per test 3 seconds memory limit per test 256 megabytes input standard i ...
- Codeforces 85D Sum of Medians(线段树)
题目链接:Codeforces 85D - Sum of Medians 题目大意:N个操作,add x:向集合中加入x:del x:删除集合中的x:sum:将集合排序后,将集合中全部下标i % 5 ...
- codeforces 85D D. Sum of Medians Vector的妙用
D. Sum of Medians Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/prob ...
- Coderforces 85 D. Sum of Medians(线段树单点修改)
D. Sum of Medians time limit per test 3 seconds memory limit per test 256 megabytes input standard i ...
- CF85D Sum of Medians
CF85D Sum of Medians 题意翻译 一个集合,初始为空.现有三个操作: 1.add:向集合里加入数x,保证加入前集合中没有数x: 2.del:从集合中删除数x,保证删除前集合中有x: ...
- 85D Sum of Medians
传送门 题目 In one well-known algorithm of finding the k-th order statistics we should divide all element ...
随机推荐
- CF36 E Two Paths——欧拉(回)路
题目:http://codeforces.com/contest/36/problem/E 给定一张无向图,要求输出两条欧拉路覆盖所有边: 分类讨论,首先判-1:有两个以上连通块 / 有四个以上奇度数 ...
- 面向对象之继承-5种JavaScript继承的方法
今天我们讨论一下常用的几种继承方法:首先我们创建一个动物函数Animal: function Animal () { this.species = '动物' }再写准备名叫猫咪的函数Cat: func ...
- 51nod 1340 差分约束
思路: 带未知量的Floyd 很强 http://yousiki.net/index.php/archives/87/ //By SiriusRen #include <bits/stdc++. ...
- Android开发之Intent.Action Android中Intent的各种常见作用
1 Intent.ACTION_MAIN String: android.intent.action.MAIN 标识Activity为一个程序的开始.比较常用. Input:nothing Outpu ...
- linux命令(001) -- chkconfig
一.准备知识 在说明chkconfig命令的用途之前,有必要先了解一下Linux系统中/etc/rc[0-6].d目录的用途. 众所周知,在Linux系统定义了7种不同的启动级别,这7种启动级别的含义 ...
- jsp动态网页开发基础
JSP基础语法 jsp页面元素构成 jsp页面组成部分有:指令,注释,静态内容,表达式,小脚本,声明. 1.表达式<%= %> 2.小脚本<% %> 3.声 ...
- MVC系列学习(零)-本次学习可能会遇到的问题汇总
1.命名空间"System.Web"中不存在类型或命名空间名称"Optimization"(是否缺少程序集引用?) 在 区域学习(十六),遇到了个错误,如下 解 ...
- CSS实现两栏布局
写在前面 两栏布局是指页面布局由主栏和边栏组成,是许多网页的布局方式,一般使用CSS去实现两栏布局. 实现两栏布局的方式有多种,这里采用四种比较常见的实现方式.主要是流体布局(liquid layou ...
- Leetcode0006--ZigZag Conversion
[转载请注明]https://www.cnblogs.com/igoslly/p/9017638.html 来看一下题目: The string "PAYPALISHIRING" ...
- SQL Server建库-建表-建约束
----------------------------------------SQL Server建库-建表-建约束创建School数据库------------------------------ ...