Sum of Medians
time limit per test

3 seconds

memory limit per test

256 megabytes

In one well-known algorithm of finding the k-th order statistics we should divide all elements into groups of five consecutive elements and find the median of each five. A median is called the middle element of a sorted array (it's the third largest element for a group of five). To increase the algorithm's performance speed on a modern video card, you should be able to find a sum of medians in each five of the array.

A sum of medians of a sorted k-element set S = {a1, a2, ..., ak}, where a1 < a2 < a3 < ... < ak, will be understood by as

The  operator stands for taking the remainder, that is  stands for the remainder of dividing x by y.

To organize exercise testing quickly calculating the sum of medians for a changing set was needed.

Input

The first line contains number n (1 ≤ n ≤ 105), the number of operations performed.

Then each of n lines contains the description of one of the three operations:

  • add x — add the element x to the set;
  • del x — delete the element x from the set;
  • sum — find the sum of medians of the set.

For any add x operation it is true that the element x is not included in the set directly before the operation.

For any del x operation it is true that the element x is included in the set directly before the operation.

All the numbers in the input are positive integers, not exceeding 109.

Output

For each operation sum print on the single line the sum of medians of the current set. If the set is empty, print 0.

Please, do not use the %lld specificator to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams (also you may use the %I64d specificator).

Examples
input
6
add 4
add 5
add 1
add 2
add 3
sum
output
3
input
14
add 1
add 7
add 2
add 5
sum
add 6
add 8
add 9
add 3
add 4
add 10
sum
del 1
sum
output
5
11
13
分析:单点修改+区间查询下标i%5=3的值的和;
   暴力修改查询肯定慢了,所以考虑线段树;
   怎么查询i%5=3的和呢?这是难点;
   假设ret[rt][i]代表rt区间下标%5=i的和,sum[rt]代表rt区间的个数;
   考虑到了rt节点,ret[rt][i](rt区间内下标%5=i的和)显然可以加上ret[lson][i],那么rson呢?
   这个可以推一推,结论是加上ret[rson][(i-sum[lson]%5+5)%5];
   所以线段树单点更新即可;
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <bitset>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#define rep(i,m,n) for(i=m;i<=n;i++)
#define mod 1000000007
#define inf 0x3f3f3f3f
#define vi vector<int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
#define pii pair<int,int>
#define sys system("pause")
const int maxn=1e5+;
const int N=1e3+;
using namespace std;
int id(int l,int r){return l+r|l!=r;}
ll gcd(ll p,ll q){return q==?p:gcd(q,p%q);}
ll qpow(ll p,ll q){ll f=;while(q){if(q&)f=f*p;p=p*p;q>>=;}return f;}
int n,m,k,t,sum[maxn<<],a[maxn],b[maxn],c[maxn],cnt;
ll ret[maxn<<][];
char op[];
void upd(int x,int y,int pos,int l,int r,int rt)
{
int i;
if(l==r)
{
sum[rt]+=x;
ret[rt][]+=y;
return;
}
int mid=l+r>>;
if(pos<=mid)upd(x,y,pos,l,mid,id(l,mid));
else upd(x,y,pos,mid+,r,id(mid+,r));
rep(i,,)ret[rt][i]=ret[id(l,mid)][i]+ret[id(mid+,r)][(i-sum[id(l,mid)]%+)%];
sum[rt]=sum[id(l,mid)]+sum[id(mid+,r)];
}
int main()
{
int i,j;
scanf("%d",&n);
rep(i,,n)
{
scanf("%s",op);
if(op[]=='s')a[i]=;
else if(op[]=='d')scanf("%d",&b[i]),a[i]=;
else scanf("%d",&b[i]),a[i]=,c[++cnt]=b[i];
}
sort(c+,c+cnt+);
cnt=unique(c+,c+cnt+)-c-;
rep(i,,n)
{
if(a[i]==)
{
upd(,b[i],lower_bound(c+,c+cnt+,b[i])-c,,cnt,id(,cnt));
}
else if(a[i]==)
{
upd(-,-b[i],lower_bound(c+,c+cnt+,b[i])-c,,cnt,id(,cnt));
}
else printf("%lld\n",ret[id(,cnt)][]);
}
return ;
}

Sum of Medians的更多相关文章

  1. codeforces 85D D. Sum of Medians 线段树

    D. Sum of Medians time limit per test 3 seconds memory limit per test 256 megabytes input standard i ...

  2. Codeforces 85D Sum of Medians

    传送门 D. Sum of Medians time limit per test 3 seconds memory limit per test 256 megabytes input standa ...

  3. Yandex.Algorithm 2011 Round 1 D. Sum of Medians 线段树

    题目链接: Sum of Medians Time Limit:3000MSMemory Limit:262144KB 问题描述 In one well-known algorithm of find ...

  4. 数据结构(线段树):CodeForces 85D Sum of Medians

    D. Sum of Medians time limit per test 3 seconds memory limit per test 256 megabytes input standard i ...

  5. Codeforces 85D Sum of Medians(线段树)

    题目链接:Codeforces 85D - Sum of Medians 题目大意:N个操作,add x:向集合中加入x:del x:删除集合中的x:sum:将集合排序后,将集合中全部下标i % 5 ...

  6. codeforces 85D D. Sum of Medians Vector的妙用

    D. Sum of Medians Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/prob ...

  7. Coderforces 85 D. Sum of Medians(线段树单点修改)

    D. Sum of Medians time limit per test 3 seconds memory limit per test 256 megabytes input standard i ...

  8. CF85D Sum of Medians

    CF85D Sum of Medians 题意翻译 一个集合,初始为空.现有三个操作: 1.add:向集合里加入数x,保证加入前集合中没有数x: 2.del:从集合中删除数x,保证删除前集合中有x: ...

  9. 85D Sum of Medians

    传送门 题目 In one well-known algorithm of finding the k-th order statistics we should divide all element ...

随机推荐

  1. 【HDU 4699】 Editor

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=4699 [算法] 维护两个栈,一个栈放光标之前的数,另外一个放光标之后的数 在维护栈的同时求最大前缀 ...

  2. openstack service glance-api/registry mysql of max_connection

  3. Java中static final 与 final 的区别(转载)

    转自:http://advance0683.iteye.com/blog/1107732 Java中static final 与 final 的区别: 例子: Java代码 import java.u ...

  4. 什么是JavaScript的原始值?

    JavaScript的原始值是指数字.字符串.布尔值.null和undefined. JavaScript的数据类型分为两类:原始类型(primitive type)和对象类型(object type ...

  5. HttpFileCollection 类使用

    public ActionResult GetForm()        {            HttpRequest request = System.Web.HttpContext.Curre ...

  6. 用Python一键搭建Http服务器的方法

    用Python一键搭建Http服务器的方法 Python3请看 python -m http.server 8000 & Python2请看 python -m SimpleHTTPServe ...

  7. Android:EditText属性大全

    一.inputType属性inputType属性在EditText输入值时启动的虚拟键盘的风格有着重要的作用.比如有时需要虚拟键盘只为字符或只为数字. <span style="fon ...

  8. 跨平台键鼠共享软件synergy使用

    如果共享的机子都是win系统的话,也可以使用 无界鼠标. 这里主要讲跨平台通用的synergy.下载地址:http://synergy-project.org/ 注意1:最好下载同一位数,同一版本的. ...

  9. iis设置404错误页,返回500状态码

    一般在II6下,设置自定义404错误页时,只需要在错误页中选择自定义的页面,做自己的404页面即可.但是在IIS7.0及以上时,设置完404错误页后,会发现状态码返回的是500,并且可能会引起页面乱码 ...

  10. 【PostgreSQL-9.6.3】触发器实例

    1. 创建一个触发器,表中的行在任何时候被插入或更新时,当前用户名和时间也会被标记在该行中.并且它会检查雇员的姓名以及薪水. --创建测试表 CREATE TABLE emp ( empname te ...