Galaxy

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)

Total Submission(s): 556    Accepted Submission(s): 127

Special Judge

Problem Description
Good news for us: to release the financial pressure, the government started selling galaxies and we can buy them from now on! The first one who bought a galaxy was Tianming Yun and he gave it to Xin Cheng as a present.






To be fashionable, DRD also bought himself a galaxy. He named it Rho Galaxy. There are n stars in Rho Galaxy, and they have the same weight, namely one unit weight, and a negligible volume. They initially lie in a line rotating around their center of mass.



Everything runs well except one thing. DRD thinks that the galaxy rotates too slow. As we know, to increase the angular speed with the same angular momentum, we have to decrease the moment of inertia.



The moment of inertia I of a set of n stars can be calculated with the formula






where wi is the weight of star i, di is the distance form star i to the mass of center.



As DRD’s friend, ATM, who bought M78 Galaxy, wants to help him. ATM creates some black holes and white holes so that he can transport stars in a negligible time. After transportation, the n stars will also rotate around their new center of mass. Due to financial
pressure, ATM can only transport at most k stars. Since volumes of the stars are negligible, two or more stars can be transported to the same position.



Now, you are supposed to calculate the minimum moment of inertia after transportation.
 
Input
The first line contains an integer T (T ≤ 10), denoting the number of the test cases.



For each test case, the first line contains two integers, n(1 ≤ n ≤ 50000) and k(0 ≤ k ≤ n), as mentioned above. The next line contains n integers representing the positions of the stars. The absolute values of positions will be no more than 50000.
 
Output
For each test case, output one real number in one line representing the minimum moment of inertia. Your answer will be considered correct if and only if its absolute or relative error is less than 1e-9.
 
Sample Input
2
3 2
-1 0 1
4 2
-2 -1 1 2
 
Sample Output
0
0.5
 
Source
 
题目大意:数轴上有n个点。每一个点重量1 ,能够移动当中k个点到不论什么位置, 使得题中式子的值最小

解题思路:选择保留区间长度为N - K的连续的数, 然后其余的K个数都移动到这N-K个数的中心。

那个式子事实上表示的是方差。选择的点越密集,方差越小,所以选择连续的N-K个。

其余的假设放到其它地方。肯定没有放到N-K的质心更优。

但这样每次枚举长度为N-K的区间。再计算对应的方差。复杂度为O(NK),会超时。所以通过数学推导变形,避免反复计算。详细例如以下:

第i个到第i+n-k-1个的

方差 = (Xi - X)^2 + (Xi+1 - X)^2 + ... + (Xi+n-k-1 - X)^2                              (当中X表示Xi,Xi+1, ... , Xi+n-k-1的平均值)

= Xi^2 + Xi+1^2 + ... + Xi+n-k-1^2 - 2X(Xi + Xi+1 + ... Xi+n-k-1)        (令sum2=Xi^2 + Xi+1^2 + ... + Xi+n-k-1^2,sum1=Xi+Xi+1+ ... +Xi+n-k-1)

= sum2 - sum1^2 / (n - k)

所以,排序后维护两种前缀,O(n)扫描。取方差的最小值就可以。

參考代码:
#include <iostream>
#include <algorithm>
#include <cstdio>
using namespace std; const int MAXN = 50010;
const double INF = 1e20;
int n, k, nCase;
double p[MAXN], sum1[MAXN], sum2[MAXN], ans; void init() {
ans = INF;
sum1[0] = sum2[0] = 0.0;
} void input() {
scanf("%d%d", &n, &k);
for (int i = 1; i <= n; i++) {
scanf("%lf", &p[i]);
}
} void solve() {
if (n == k) {
printf("%.10lf\n", 0);
return;
}
sort(p+1, p+n+1);
for (int i = 1; i <= n; i++) {
sum1[i] = sum1[i-1] + p[i];
sum2[i] = sum2[i-1] + p[i]*p[i];
}
for (int i = 1; i <= k+1; i++) {
double s1 = sum1[i+n-k-1] - sum1[i-1];
double s2 = sum2[i+n-k-1] - sum2[i-1];
double tmp = s2 - s1*s1 / (n-k);
if (tmp < ans) ans = tmp;
} printf("%.10lf\n", ans);
} int main() {
scanf("%d", &nCase);
while (nCase--) {
init();
input();
solve();
}
return 0;
}

版权声明:本文博客原创文章,博客,未经同意,不得转载。

HDU 5073 Galaxy(Anshan 2014)(数学推导,贪婪)的更多相关文章

  1. hdu 5073 Galaxy(2014 鞍山现场赛)

    Galaxy                                                                   Time Limit: 2000/1000 MS (J ...

  2. HDU 5073 Galaxy (2014 Anshan D简单数学)

    HDU 5073 Galaxy (2014 Anshan D简单数学) 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5073 Description G ...

  3. hdu 5073 Galaxy(2014acm鞍山亚洲分部 C)

    主题链接:http://acm.hdu.edu.cn/showproblem.php? pid=5073 Galaxy Time Limit: 2000/1000 MS (Java/Others)   ...

  4. hdu 5073 Galaxy(2014acm鞍山亚洲分部 D)

    主题链接:http://acm.hdu.edu.cn/showproblem.php? pid=5073 Galaxy Time Limit: 2000/1000 MS (Java/Others)   ...

  5. 2014 Asia AnShan Regional Contest --- HDU 5073 Galaxy

    Galaxy Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=5073 Mean: 在一条数轴上,有n颗卫星,现在你可以改变k颗 ...

  6. HDU 5073 Galaxy 2014 Asia AnShan Regional Contest 规律题

    推公式 #include <cstdio> #include <cmath> #include <iomanip> #include <iostream> ...

  7. HDU 5073 Galaxy(2014鞍山赛区现场赛D题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5073 解题报告:在一条直线上有n颗星星,一开始这n颗星星绕着重心转,现在我们可以把其中的任意k颗星星移 ...

  8. ACM学习历程—HDU 5073 Galaxy(数学)

    Description Good news for us: to release the financial pressure, the government started selling gala ...

  9. hdu 5073 Galaxy 数学 铜牌题

    0.5 题意:有n(n<=5e4)个质点位于一维直线上,现在你可以任意移动其中k个质点,且移动到任意位置,设移动后的中心为e,求最小的I=(x[1]-e)^2+(x[2]-e)^2+(x[3]- ...

随机推荐

  1. HDU1248 寒冰王座 【数学题】or【全然背包】

    寒冰王座 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  2. linux下的打包和压缩

    linux中常见的两种压缩包文件的格式是.tar..gz和.tar.gz..tar仅仅是将文件简单地打包,文件的大小没有变化,也就是说.tar文件仅仅是一个包,没有被压缩:.tar.gz文件是打包后用 ...

  3. 一段代码的疑问(1)——unsigned与signed

    现象: 先来看一段代码: 这段代码的输出结果是: -84 4294967264 分析: xiaoqiang@dev:~/cpp$ g++ -g c212.cc -o temp xiaoqiang@de ...

  4. ZOJ 1203 Swordfish MST

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1203 大意: 给出一些点,求MST 把这几天的MST一口气发上来. kru ...

  5. DC综合:划分与编码风格

    划分与编码风格 合理的设计划分和好的HDL编码风格对成功的综合影响很大. 逻辑划分是成功综合(和布局布线,如果布图是层次化的)的关键. 综合划分 "分而治之" 把复杂的设计化简为更 ...

  6. android的edittext设置输入限制,只能输入数字

    EditText的属性里面已经封装好了相关的设置,上一篇文章里面也提到了,不熟悉的可以去查看上一篇EditText属性大全,这里着重讲输入限制的属性: android:digits="123 ...

  7. iframe父页面与子页面的交互

    iframe子页面调用父页面的变量.js方法.元素(非跨域): window.parent.varName; //获取父页面js全局变量 window.parent.fnName; //获取父页面js ...

  8. gitlab+jenkins+pm2+rsync实现node的自动化部署

    环境配置 jenkins java环境 yum install -y java 安装jenkins wget -O /etc/yum.repos.d/jenkins.repo http://pkg.j ...

  9. JSON 表达式

    JSON语法规则:     数据在名称/值对中:     数据由逗号分隔:     大括号保存对象:     中括号保存数组 1.访问对象值: var myObj,x; myObj = {" ...

  10. [NPM] Run a set of similar npm scripts with a wildcard

    In this lesson we will run a set of scripts that are grouped together with a wildcard using the npm- ...