UOJ #310 黎明前的巧克力 (FWT)
题目大意:给你一个序列,定义一个子序列的权值表示子序列中元素的异或和,现在让你选出两个互不相交的子序列,求选出的这两个子序列权值相等的方案数,$n,a_{i}\leq 10^{6}$
这是一道考察对$FWT$算法理解的好题。然而我并不会
思路来自出题人的题解
假设权值最大值为$m$
暴力怎么搞?背包$DP$一下
定义$f(i,j)$表示现在遍历到了第$i$个元素,选出的两个子序列异或和为$j$的方案数,容易得到方程:
$f(i,j)=f(i-1,j)+2*f(i-1,j\;xor\;a_{i})$
时间复杂度$O(nm)$,可以获得30分
看那个卷积形式,$FWT$?
时间复杂度$O(nmlogm)$,可以获得..0分
我们发现每一层的生成函数里只有两个位置有值
假设现在我们遍历到了第$i$个物品$a_{i}$,第$i$层的生成函数长这个样:
$f_{i}(0)=1, f_{i}(a_{i})=2$
其它位置都是0诶
对它进行FWT正变换,会发现正变换之后的数组里只有-1和3
因为$f_{i}(0)$对每个位置都有+1的贡献,而$f_{i}(a_{i})$对每个位置有+2或-2点贡献
重新考虑那个$0$分暴力。我们把每一层都正变换,然后对应位置相乘,再逆变换回来
我们可以想办法快速求出对应位置相乘之后的数组$F$,这样再用一次逆变换就行了
我们只需要统计出每个位置上有几个3相乘,设3的数量是$x$,-1的数量就是$n-x$,快速幂一下,就能得到$F$了
我们把贡献积转化成了指数上的贡献和,发现只用一次正变换就行啦!
再用快速幂把贡献和转化成贡献积。最后逆变换回来就行了
时间$O(mlogm)$
#include <cstdio>
#include <cstring>
#include <algorithm>
#def_{i}ne N1 (1<<20)+10
#def_{i}ne ll long long
using namespace std;
const int p=; template <typename _T> void read(_T &ret)
{
ret=; _T fh=; char c=getchar();
while(c<''||c>''){ if(c=='-') fh=-; c=getchar(); }
while(c>=''&&c<=''){ ret=ret*+c-''; c=getchar(); }
ret=ret*fh;
} ll qpow(ll x,ll y)
{
ll ans=;
for(;y>;x=x*x%p,y>>=) if(y&) ans=ans*x%p;
return ans;
} void FWT_XOR(int *s,int len,int type)
{
int i,j,k,t,inv2=qpow(,p-);
for(k=;k<=len;k<<=)
for(i=;i<len;i+=k)
for(j=;j<(k>>);j++)
{
t=s[i+j+(k>>)]; s[i+j+(k>>)]=(s[i+j]-t+p)%p; s[i+j]=(s[i+j]+t)%p;
if(type==-) s[i+j]=1ll*s[i+j]*inv2%p, s[i+j+(k>>)]=1ll*s[i+j+(k>>)]*inv2%p;
}
} int n,ma,len,L;
int a[N1],s[N1]; int ma_{i}n()
{
scanf("%d",&n);
int i,j,x;
for(i=;i<=n;i++) read(a[i]);
for(i=;i<=n;i++) s[a[i]]++, ma=max(ma,a[i]);
for(len=,L=;len<ma+;len<<=,L++);
for(i=;i<len;i++) if(s[i]<) s[i]+=p;
FWT_XOR(s,len,);
for(i=;i<len;i++)
{
if(s[i]>n) s[i]-=p; x=(n+s[i])/;
s[i]=( ( ((n-x)&) ? -1ll:1ll )*qpow(,x)+p)%p;
}
FWT_XOR(s,len,-);
printf("%d\n",(s[]-+p)%p);
return ;
}
UOJ #310 黎明前的巧克力 (FWT)的更多相关文章
- UOJ #310 黎明前的巧克力 FWT dp
LINK:黎明前的巧克力 我发现 很多难的FWT的题 都和方程有关. 上次那个西行寺无余涅槃 也是各种解方程...(不过这个题至今还未理解. 考虑dp 容易想到f[i][j][k]表示 第一个人得到巧 ...
- UOJ 310 黎明前的巧克力(FWT)
[题目链接] http://uoj.ac/problem/310 [题目大意] 给出一个数集,A从中选择一些数,B从中选择一些数,不能同时不选 要求两者选择的数异或和为0,问方案数 [题解] 题目等价 ...
- uoj310【UNR #2】黎明前的巧克力(FWT)
uoj310[UNR #2]黎明前的巧克力(FWT) uoj 题解时间 对非零项极少的FWT的优化. 首先有个十分好想的DP: $ f[i][j] $ 表示考虑了前 $ i $ 个且异或和为 $ j ...
- UOJ#310 【UNR #2】黎明前的巧克力 FWT 多项式
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ310.html 题目传送门 - UOJ#310 题意 给定 $n$ 个数 ,请你选出两个不相交的集合(两个 ...
- 【uoj#310】[UNR #2]黎明前的巧克力 FWT
题目描述 给出 $n$ 个数,从中选出两个互不相交的集合,使得第一个集合与第二个集合内的数的异或和相等.求总方案数. 输入 第一行一个正整数 $n$ ,表示巧克力的个数.第二行 $n$ 个整数 $a_ ...
- UOJ#310. 【UNR #2】黎明前的巧克力(FWT)
题意 题目链接 Sol 挂一个讲的看起来比较好的链接 然鹅我最后一步还是没看懂qwq.. 坐等SovietPower大佬发博客 #include<bits/stdc++.h> using ...
- UOJ310. 【UNR #2】黎明前的巧克力 [FWT]
UOJ 思路 显然可以转化一下,变成统计异或起来等于0的集合个数,这样一个集合的贡献是\(2^{|S|}\). 考虑朴素的\(dp_{i,j}\)表示前\(i\)个数凑出了\(j\)的方案数,发现这其 ...
- [FWT] UOJ #310. 【UNR #2】黎明前的巧克力
[uoj#310][UNR #2]黎明前的巧克力 FWT - GXZlegend - 博客园 f[i][xor],考虑优化暴力,暴力就是FWT xor一个多项式 整体处理 (以下FWT代表第一步) F ...
- 【UOJ#310】【UNR#2】黎明前的巧克力(FWT)
[UOJ#310][UNR#2]黎明前的巧克力(FWT) 题面 UOJ 题解 把问题转化一下,变成有多少个异或和为\(0\)的集合,然后这个集合任意拆分就是答案,所以对于一个大小为\(s\)的集合,其 ...
随机推荐
- TDD尝试:nodejs单元测试
单元测试是最小化的测试方式,也是TDD的做法. TDD概念如下图: 通过测试反馈推进开发,ruby是推崇这种编程方式的. nodejs有如下常用单元测试模块 1.mocha Mocha是一个基于nod ...
- Oracle数据库软件标准版的一个限制:仅仅能用一个rman channel
Oracle数据库软件标准版的一个限制:仅仅能用一个rman channel Restrictions in "Standard Edition" Rman channel all ...
- 4、angularJS过滤器
一.过滤器的作用 过滤器用来格式化须要展示给用户的数据. 在HTML中的模板绑定符号{{ }}内通过|符号来调用过滤器. 比如.如果我们希望将字符串转换成大写能够对字符串中的每一个字符都单独进行转换操 ...
- 使用OpenCV滑动条写成的简单调色器,实时输出RGB值
好久没有写博客了,近期在看OpenCV.于是动手写了个简单的RGB调色器,在终端实时输出RGB的值.通过这个程序学习滑动条的使用.程序中主要用到cvCreateTrackbar ,其使用方法例如以下: ...
- 从vs中删除自带的Microsoft Git Provider
https://researchaholic.com/2015/02/02/remove-the-microsoft-gitprovider-from-visual-studio-2013/ vs自带 ...
- C# winform 组件---- folderBrowserDialog与openFileDialog(转)
C# winform 组件---- folderBrowserDialog与openFileDialog 2009-06-27 13:36 2153人阅读 评论(1) 收藏 举报 winformc#b ...
- System.IO.Path
System.IO.Path 分类: C#2011-03-23 10:54 1073人阅读 评论(0) 收藏 举报 扩展磁盘string2010c System.IO.Path提供了一些处理文件名和路 ...
- Codeforces--598A--Tricky Sum(数学)
Tricky Sum Tricky SumCrawling in process... Crawling failed Time Limit:1000MS Memory Limit:26 ...
- bzoj 1053 [ HAOI 2007 ] 反素数ant ——暴搜
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1053 试图打表找规律,但无果... 看TJ了,暴搜: 注意参数 w 是 long long. ...
- Bootstrap 只读输入框
只读输入框 为输入框设置 readonly 属性可以禁止用户输入,并且输入框的样式也是禁用状态. <input class="form-control" type=&qu ...