题目传送门

题目大意:给你一个序列,定义一个子序列的权值表示子序列中元素的异或和,现在让你选出两个互不相交的子序列,求选出的这两个子序列权值相等的方案数,$n,a_{i}\leq 10^{6}$

这是一道考察对$FWT$算法理解的好题。然而我并不会

思路来自出题人的题解

假设权值最大值为$m$

暴力怎么搞?背包$DP$一下

定义$f(i,j)$表示现在遍历到了第$i$个元素,选出的两个子序列异或和为$j$的方案数,容易得到方程:

$f(i,j)=f(i-1,j)+2*f(i-1,j\;xor\;a_{i})$

时间复杂度$O(nm)$,可以获得30分

看那个卷积形式,$FWT$?

时间复杂度$O(nmlogm)$,可以获得..0分

我们发现每一层的生成函数里只有两个位置有值

假设现在我们遍历到了第$i$个物品$a_{i}$,第$i$层的生成函数长这个样:

$f_{i}(0)=1, f_{i}(a_{i})=2$

其它位置都是0诶

对它进行FWT正变换,会发现正变换之后的数组里只有-1和3

因为$f_{i}(0)$对每个位置都有+1的贡献,而$f_{i}(a_{i})$对每个位置有+2或-2点贡献

重新考虑那个$0$分暴力。我们把每一层都正变换,然后对应位置相乘,再逆变换回来

我们可以想办法快速求出对应位置相乘之后的数组$F$,这样再用一次逆变换就行了

我们只需要统计出每个位置上有几个3相乘,设3的数量是$x$,-1的数量就是$n-x$,快速幂一下,就能得到$F$了

我们把贡献积转化成了指数上的贡献和,发现只用一次正变换就行啦!

再用快速幂把贡献和转化成贡献积。最后逆变换回来就行了

时间$O(mlogm)$

 #include <cstdio>
#include <cstring>
#include <algorithm>
#def_{i}ne N1 (1<<20)+10
#def_{i}ne ll long long
using namespace std;
const int p=; template <typename _T> void read(_T &ret)
{
ret=; _T fh=; char c=getchar();
while(c<''||c>''){ if(c=='-') fh=-; c=getchar(); }
while(c>=''&&c<=''){ ret=ret*+c-''; c=getchar(); }
ret=ret*fh;
} ll qpow(ll x,ll y)
{
ll ans=;
for(;y>;x=x*x%p,y>>=) if(y&) ans=ans*x%p;
return ans;
} void FWT_XOR(int *s,int len,int type)
{
int i,j,k,t,inv2=qpow(,p-);
for(k=;k<=len;k<<=)
for(i=;i<len;i+=k)
for(j=;j<(k>>);j++)
{
t=s[i+j+(k>>)]; s[i+j+(k>>)]=(s[i+j]-t+p)%p; s[i+j]=(s[i+j]+t)%p;
if(type==-) s[i+j]=1ll*s[i+j]*inv2%p, s[i+j+(k>>)]=1ll*s[i+j+(k>>)]*inv2%p;
}
} int n,ma,len,L;
int a[N1],s[N1]; int ma_{i}n()
{
scanf("%d",&n);
int i,j,x;
for(i=;i<=n;i++) read(a[i]);
for(i=;i<=n;i++) s[a[i]]++, ma=max(ma,a[i]);
for(len=,L=;len<ma+;len<<=,L++);
for(i=;i<len;i++) if(s[i]<) s[i]+=p;
FWT_XOR(s,len,);
for(i=;i<len;i++)
{
if(s[i]>n) s[i]-=p; x=(n+s[i])/;
s[i]=( ( ((n-x)&) ? -1ll:1ll )*qpow(,x)+p)%p;
}
FWT_XOR(s,len,-);
printf("%d\n",(s[]-+p)%p);
return ;
}

UOJ #310 黎明前的巧克力 (FWT)的更多相关文章

  1. UOJ #310 黎明前的巧克力 FWT dp

    LINK:黎明前的巧克力 我发现 很多难的FWT的题 都和方程有关. 上次那个西行寺无余涅槃 也是各种解方程...(不过这个题至今还未理解. 考虑dp 容易想到f[i][j][k]表示 第一个人得到巧 ...

  2. UOJ 310 黎明前的巧克力(FWT)

    [题目链接] http://uoj.ac/problem/310 [题目大意] 给出一个数集,A从中选择一些数,B从中选择一些数,不能同时不选 要求两者选择的数异或和为0,问方案数 [题解] 题目等价 ...

  3. uoj310【UNR #2】黎明前的巧克力(FWT)

    uoj310[UNR #2]黎明前的巧克力(FWT) uoj 题解时间 对非零项极少的FWT的优化. 首先有个十分好想的DP: $ f[i][j] $ 表示考虑了前 $ i $ 个且异或和为 $ j ...

  4. UOJ#310 【UNR #2】黎明前的巧克力 FWT 多项式

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ310.html 题目传送门 - UOJ#310 题意 给定 $n$ 个数 ,请你选出两个不相交的集合(两个 ...

  5. 【uoj#310】[UNR #2]黎明前的巧克力 FWT

    题目描述 给出 $n$ 个数,从中选出两个互不相交的集合,使得第一个集合与第二个集合内的数的异或和相等.求总方案数. 输入 第一行一个正整数 $n$ ,表示巧克力的个数.第二行 $n$ 个整数 $a_ ...

  6. UOJ#310. 【UNR #2】黎明前的巧克力(FWT)

    题意 题目链接 Sol 挂一个讲的看起来比较好的链接 然鹅我最后一步还是没看懂qwq.. 坐等SovietPower大佬发博客 #include<bits/stdc++.h> using ...

  7. UOJ310. 【UNR #2】黎明前的巧克力 [FWT]

    UOJ 思路 显然可以转化一下,变成统计异或起来等于0的集合个数,这样一个集合的贡献是\(2^{|S|}\). 考虑朴素的\(dp_{i,j}\)表示前\(i\)个数凑出了\(j\)的方案数,发现这其 ...

  8. [FWT] UOJ #310. 【UNR #2】黎明前的巧克力

    [uoj#310][UNR #2]黎明前的巧克力 FWT - GXZlegend - 博客园 f[i][xor],考虑优化暴力,暴力就是FWT xor一个多项式 整体处理 (以下FWT代表第一步) F ...

  9. 【UOJ#310】【UNR#2】黎明前的巧克力(FWT)

    [UOJ#310][UNR#2]黎明前的巧克力(FWT) 题面 UOJ 题解 把问题转化一下,变成有多少个异或和为\(0\)的集合,然后这个集合任意拆分就是答案,所以对于一个大小为\(s\)的集合,其 ...

随机推荐

  1. 使用markdown和gitblog搭建自己的博客

    GitBlog官网 GitBlog文档 Gitblog官方QQ群:84692078 GitBlog是一个简单易用的Markdown博客系统.它不须要数据库,没有管理后台功能,更新博客仅仅须要加入你写好 ...

  2. Cookie &amp;&amp; Session &amp;&amp; Token

    Cookies Cookie的由来: HTTP 本身是一个无状态的 request/response 协议. server接收一个来自client的request, 处理完以后返回一个response ...

  3. 《Spring技术内幕》笔记-第二章 IoC容器的实现

    简单介绍 1,在Spring中,SpringIoC提供了一个主要的JavaBean容器.通过IoC模式管理依赖关系.并通过依赖注入和AOP切面增强了为JavaBean这样子的POJO提供事务管理,生命 ...

  4. 卸载完百度影音以后天气助手还在,而且总是自己主动打开ie浏览器,解决方式

    今天暴风影音不好用了.我就安装了百度影音,还有意外发现.相同的视频,用百度影音看不清楚,然后我就直接卸载了.结果卸掉以天气小助手还是在,而且总弹白色小框框,各种广告.最忍不了的是还自己主动打开ie浏览 ...

  5. 【面试题】Redis相关

    1.Redis与Memorycache的区别? Redis使用单线程,而Memcached是多线程, Redis使用现场申请内存的方式来存储数据,并且可以配置虚拟内存:Memcached使用预分配的内 ...

  6. Harry Potter and the Order of the Phoenix

    书名:Harry Potter and the Order of the Phoenix 作者:J.K. Rowling 篇幅: 870P 蓝思值:950L 用时: 22天 工具: 有道词典 [透析成 ...

  7. Java压缩技术(一) ZLib

    原文:http://snowolf.iteye.com/blog/465433 有关ZLib可参见官方主页 http://www.zlib.net/ ZLib可以简单的理解为压缩/解压缩算法,它与ZI ...

  8. 工具分享2:Python 3.6.4、文本编辑器EditPlus、文本编辑器Geany

    工具官网下载地址: https://www.python.org/downloads/ python 3.6.0下载链接: 链接:https://pan.baidu.com/s/1snuSxsx 密码 ...

  9. 【转】js中几种实用的跨域方法原理详解

    这里说的js跨域是指通过js在不同的域之间进行数据传输或通信,比如用ajax向一个不同的域请求数据,或者通过js获取页面中不同域的框架中(iframe)的数据.只要协议.域名.端口有任何一个不同,都被 ...

  10. SDOI 2018 round2游记

    Day 0 早上起来从北京到济南 住宿环境不错 不过比赛环境怎么这么low啊 而且我在最偏僻的考场中最偏僻的角落里 身边居然是个妹子?! Day1 7:40到的考试地点 发现诸位大佬已经打完板子了or ...