Decision Tree builds classification or regression models in the form of a tree structure. It break down dataset into smaller and smaller subsets while an associated decision tree in incrementally developed at the same time.

Decision Tree learning use top-down recursive method. The basic idea is to construct one tree with a fastest declines of information entropy, the entropy value of all instance in each leaf nodes is zero. Each internal node of the tree corresponding to an attribute, and each leaf node corresponding to a class label.
Advantages:

  • Decision is easy to explain. It results in a set of rules. It is the same approach as humans generally follow while making decisions.
  • Interpretation of a complex Decision Tree can be simplified into visualization.It can be understood by everyone.
  • It almost have no hyper-parameter.

Infomation Gain

  • The entropy is:
  • By the information entropy, we can calculate their Experience entropy:

    where:
  • we can also calculate their Experience conditions entropy:
  • By the information entropy, we can calculate their information gain:
  • Information gain ratio:
  • Gini index:

    For binary classification:

    For binary classification and on the condition of feature A:

Three Building Algorithm

  • ID3: maximizing information gain
  • C4.5: maximizing the ratio of information gain
  • CART
    • Regression Tree: minimizing the square error.
    • Classification Tree: minimizing the Gini index.

Decision Tree Algorithm Pseudocode

  • Place the best attribute of the dataset at the root of tree.The way to the selection of best attribute is shown in Three Building Algorithm above.
  • Split the train set into subset by the best attribute.
  • Repeat Step 1 and Step 2 on each subset until you find leaf nodes in all the branches of the tree.

Random Forest

Random Forest classifiers work around that limitation by creating a whole bunch of decision trees(hence 'forest'), each trained on random subsets of training samples(bagging, drawn with replacement) and features(drawn without replacement).Make the decision tree work together to get result.
In one word, it build on CART with randomness.

  • Randomness 1:train the tree on the subsets of train set selected by bagging(sampling with replacement).

  • Randomness 2:train the tree on the subsets of features(sampling without replacement). For example, select 10 features from 100 features in dataset.
  • Randomness 3:add new feature by low-dimensional projection.

后记

装逼想用英文写博客,想借此锻炼自己的写作能力,无情打脸( ̄ε(# ̄)

Ref:https://clyyuanzi.gitbooks.io/julymlnotes/content/rf.html
http://www.saedsayad.com/decision_tree.htm
http://dataaspirant.com/2017/01/30/how-decision-tree-algorithm-works/
统计学习方法(李航)

Decision Tree的更多相关文章

  1. Spark MLlib - Decision Tree源码分析

    http://spark.apache.org/docs/latest/mllib-decision-tree.html 以决策树作为开始,因为简单,而且也比较容易用到,当前的boosting或ran ...

  2. 决策树Decision Tree 及实现

    Decision Tree 及实现 标签: 决策树熵信息增益分类有监督 2014-03-17 12:12 15010人阅读 评论(41) 收藏 举报  分类: Data Mining(25)  Pyt ...

  3. Gradient Boosting Decision Tree学习

    Gradient Boosting Decision Tree,即梯度提升树,简称GBDT,也叫GBRT(Gradient Boosting Regression Tree),也称为Multiple ...

  4. 使用Decision Tree对MNIST数据集进行实验

    使用的Decision Tree中,对MNIST中的灰度值进行了0/1处理,方便来进行分类和计算熵. 使用较少的测试数据测试了在对灰度值进行多分类的情况下,分类结果的正确率如何.实验结果如下. #Te ...

  5. Sklearn库例子1:Sklearn库中AdaBoost和Decision Tree运行结果的比较

    DisCrete Versus Real AdaBoost 关于Discrete 和Real AdaBoost 可以参考博客:http://www.cnblogs.com/jcchen1987/p/4 ...

  6. 用于分类的决策树(Decision Tree)-ID3 C4.5

    决策树(Decision Tree)是一种基本的分类与回归方法(ID3.C4.5和基于 Gini 的 CART 可用于分类,CART还可用于回归).决策树在分类过程中,表示的是基于特征对实例进行划分, ...

  7. OpenCV码源笔记——Decision Tree决策树

    来自OpenCV2.3.1 sample/c/mushroom.cpp 1.首先读入agaricus-lepiota.data的训练样本. 样本中第一项是e或p代表有毒或无毒的标志位:其他是特征,可以 ...

  8. GBDT(Gradient Boosting Decision Tree)算法&协同过滤算法

    GBDT(Gradient Boosting Decision Tree)算法参考:http://blog.csdn.net/dark_scope/article/details/24863289 理 ...

  9. Gradient Boost Decision Tree(&Treelink)

    http://www.cnblogs.com/joneswood/archive/2012/03/04/2379615.html 1.      什么是Treelink Treelink是阿里集团内部 ...

  10. (转)Decision Tree

    Decision Tree:Analysis 大家有没有玩过猜猜看(Twenty Questions)的游戏?我在心里想一件物体,你可以用一些问题来确定我心里想的这个物体:如是不是植物?是否会飞?能游 ...

随机推荐

  1. TCP协议的一些认识及实践

    http://www.2cto.com/net/201210/163047.html 一.简介 引用<TCP/IP详解-卷1>中的介绍,TCP与UDP使用相同的网络层(IP层),TCP却向 ...

  2. IT增值服务实践心得体会:企业客户的钱比个人客户好赚得多

    友情提示 本人喜欢直言不讳,不喜欢拐弯抹角.喜欢从客观和主观.自身和他人等多种角度去探讨问题.如有不当之处,欢迎吐槽. 若干心得体会1.企业客户的钱更好赚,个人客户的钱很难.  为什么这么说呢? a. ...

  3. Erlang游戏开发-协议

    Erlang游戏开发-协议 选择什么协议? 协议包含通讯协议和数据格式. 通讯协议 通讯协议目前常用的是:HTTP 和TCP .其有各自的特点根据游戏的特点而进行选择. HTTP HTTP比较成熟,使 ...

  4. TensorFlow 学习(十)—— 工具函数

    1. 基本 tf.clip_by_value() 截断,常和对数函数结合使用 # 计算交叉熵 crose_ent = -tf.reduce_mean(tf.log(y_*tf.clip_by_valu ...

  5. 【codeforces 787B】Not Afraid

    [题目链接]:http://codeforces.com/contest/787/problem/B [题意] -水题..题目太吓人 [题解] 只要你在一组里面找到两个数字,它们的绝对值相同,但是正负 ...

  6. 一个自己犯的react错误

    在看<react小书>高阶组件一节的时候,看到如下代码 import React, { Component } from 'react' export default (WrappedCo ...

  7. Android Studio如何删除module

    当你想在Android Studio中删除某个module时,大家习惯性的做法都是选中要删除的module,右键去找delete.但是 在Android Studio中你选中module,右键会发现没 ...

  8. JTextpane 加入的行号

    最近项目需求,在需求JTextPane加入行号等信息,网上找了半天才发现JTextArea加入行号信息.copy正在研究在线程序.他发现自己能够做出改变来改变JTextPane显示行号. 代码: pa ...

  9. node assert模块 Study.1

    1.assert() 大体理解意思:assert可以抽象理解为node中的alert++ assert模块是Node的内置模块,用于断言的作用,如果不是自己想要的就抛出错误 assert(arg1, ...

  10. Linux下Qt5.6 Fcitx无法输入中文输入解决办法

    Qt5.6的解决办法和之前的版本有点不同,方法如下:首先安装 fcitx-frontend-qt5.然后执行: 123 sudo cp /usr/lib/x86_64-linux-gnu/qt5/pl ...