pandas之cut(),qcut()
功能:将数据进行离散化
可参见博客:https://blog.csdn.net/missyougoon/article/details/83986511 , 例子简易好懂

>>> factors = np.random.randn(9)
[ 2.12046097 0.24486218 1.64494175 -0.27307614 -2.11238291 2.15422205 -0.46832859 0.16444572 1.52536248]
传入bins参数
>>> pd.cut(factors, 3) #返回每个数对应的分组
[(0.732, 2.154], (-0.69, 0.732], (0.732, 2.154], (-0.69, 0.732], (-2.117, -0.69], (0.732, 2.154], (-0.69, 0.732], (-0.69, 0.732], (0.732, 2.154]]
Categories (3, interval[float64]): [(-2.117, -0.69] < (-0.69, 0.732] < (0.732, 2.154]] >>> pd.cut(factors, bins=[-3,-2,-1,0,1,2,3])
[(2, 3], (0, 1], (1, 2], (-1, 0], (-3, -2], (2, 3], (-1, 0], (0, 1], (1, 2]]
Categories (6, interval[int64]): [(-3, -2] < (-2, -1] < (-1, 0] < (0, 1] (1, 2] < (2, 3]] >>> pd.cut(factors, 3).value_counts() #计算每个分组中含有的数的数量
Categories (3, interval[float64]): [(-2.117, -0.69] < (-0.69, 0.732] < (0.732, 2.154]]
(-2.117, -0.69] 1
(-0.69, 0.732] 4
(0.732, 2.154] 4
传入lable参数
>>> pd.cut(factors, 3,labels=["a","b","c"]) #返回每个数对应的分组,但分组名称由label指示
[c, b, c, b, a, c, b, b, c]
Categories (3, object): [a < b < c] >>> pd.cut(factors, 3,labels=False) #返回每个数对应的分组,但仅显示分组下标
[2 1 2 1 0 2 1 1 2]
传入retbins参数
>>> pd.cut(factors, 3,retbins=True)# 返回每个数对应的分组,且额外返回bins,即每个边界值
([(0.732, 2.154], (-0.69, 0.732], (0.732, 2.154], (-0.69, 0.732], (-2.117, -0.69], (0.732, 2.154], (-0.69, 0.732], (-0.69, 0.732], (0.732, 2.154]]
Categories (3, interval[float64]): [(-2.117, -0.69] < (-0.69, 0.732] < (0.732, 2.154]], array([-2.11664951, -0.69018126, 0.7320204 , 2.15422205]))

>>> pd.qcut(factors, 3) #返回每个数对应的分组
[(1.525, 2.154], (-0.158, 1.525], (1.525, 2.154], (-2.113, -0.158], (-2.113, -0.158], (1.525, 2.154], (-2.113, -0.158], (-0.158, 1.525], (-0.158, 1.525]]
Categories (3, interval[float64]): [(-2.113, -0.158] < (-0.158, 1.525] < (1.525, 2.154]] >>> pd.qcut(factors, 3).value_counts() #计算每个分组中含有的数的数量
(-2.113, -0.158] 3
(-0.158, 1.525] 3
(1.525, 2.154] 3
传入lable参数
>>> pd.qcut(factors, 3,labels=["a","b","c"]) #返回每个数对应的分组,但分组名称由label指示
[c, b, c, a, a, c, a, b, b]
Categories (3, object): [a < b < c] >>> pd.qcut(factors, 3,labels=False) #返回每个数对应的分组,但仅显示分组下标
[2 1 2 0 0 2 0 1 1]
传入retbins参数
>>> pd.qcut(factors, 3,retbins=True)# 返回每个数对应的分组,且额外返回bins,即每个边界值
[(1.525, 2.154], (-0.158, 1.525], (1.525, 2.154], (-2.113, -0.158], (-2.113, -0.158], (1.525, 2.154], (-2.113, -0.158], (-0.158, 1.525], (-0.158, 1.525]]
Categories (3, interval[float64]): [(-2.113, -0.158] < (-0.158, 1.525] < (1.525, 2.154],array([-2.113, -0.158 , 1.525, 2.154]))
另一个例子:
import numpy as np
from numpy import *
import pandas as pd
df = pd.DataFrame()
df['data'] = [1,2,2,2,2,6,7,8,9,0]#这里注意箱边界值需要唯一,不然qcut时程序会报错
df['cut']=pd.cut(df['data'],5)
df['qcut']=pd.qcut(df['data'],5)
df.head(10)
运行结果如图:
可以看到cut列各个分段之间间距相等,qcut由于数据中‘2’较多,所以2附近间距较小,2之后的分段间距较大。
pandas之cut(),qcut()的更多相关文章
- Pandas中的qcut和cut
qcut与cut的主要区别: qcut:传入参数,要将数据分成多少组,即组的个数,具体的组距是由代码计算 cut:传入参数,是分组依据.具体见示例 1.qcut方法,参考链接:http://panda ...
- pandas之cut
cut( )用来把一组数据分割成离散的区间. cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_low ...
- pandas的基本功能(一)
第16天pandas的基本功能(一) 灵活的二进制操作 体现在2个方面 支持一维和二维之间的广播 支持缺失值数据处理 四则运算支持广播 +add - sub *mul /div divmod()分区和 ...
- pandas的离散化,面元划分
pd.cut pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=, include_lowest=False) ...
- 利用Python进行数据分析-Pandas(第四部分-数据清洗和准备)
在数据分析和建模的过程中,相当多的时间要用在数据准备上:加载.清理.转换以及重塑上.这些工作会占到分析时间的80%或更多.有时,存储在文件和数据库中的数据的格式不适合某个特定的任务.研究者都选择使用编 ...
- pandas - groupby 深入及数据清洗案例
import pandas as pd import numpy as np 分割-apply-聚合 大数据的MapReduce The most general-purpose GroupBy me ...
- pandas 常规操作大全
那年夏天抓住了蝉的尾巴 gitbook 前言 pandas 抓住 Series (排序的字典), DataFrame (row + 多个 Series) 对象 , 就如同 numpy 里抓住 ndar ...
- 数据处理:12个使得效率倍增的pandas技巧
数据处理:12个使得效率倍增的pandas技巧 1. 背景描述 Python正迅速成为数据科学家偏爱的语言,这合情合理.它拥有作为一种编程语言广阔的生态环境以及众多优秀的科学计算库.如果你刚开始学习P ...
- pandas 初识(三)
Python Pandas 空值 pandas 判断指定列是否(全部)为NaN(空值) import pandas as pd import numpy as np df = pd.DataFrame ...
随机推荐
- MEAN框架学习笔记
MEAN框架学习笔记 MEAN开发框架的资料非常少.基本的资料还是来自于learn.mean.io站点上的介绍. 于是抱着一种零基础学习的心态,在了解的过程中,通过翻译加上理解将MEAN框架一点点消化 ...
- HDU 5174
题意有点不明白,因为MAX为int最大值,推测为64位,AC #include <cstdio> #include <iostream> #include <cstrin ...
- TestNG升级
TestNG 6.5.1 or above is required,please update your TestNG or uncheck 'Use project TestNG jar' from ...
- cocos2d-x的gitignore配置
# Ignore thumbnails created by windows Thumbs.db # Ignore files build by Visual Studio *.obj *.exe * ...
- 自己实现android側滑菜单
当今的android应用设计中.一种主流的设计方式就是会拥有一个側滑菜单,以图为证: 实现这种側滑效果,在5.0曾经我们用的最多的就是SlidingMenu这个开源框架,而5.0之后.goog ...
- matlab实现基于DFS的Ford_Fulkerson最大流最小割算法
function [F, maxf, V, S] = Ford_Fulkerson(C, src, sink) n = size(C, 1); F = zeros(n); maxf = 0; V = ...
- element-UI中table表格的@row-click事件和@selection-change耦合了
<el-table ref="multipleTable" :data="tableData" tooltip-effect="dark&quo ...
- actionbarsherlock示例
package com.example.viewpagerandtabdemo; import java.util.ArrayList; import java.util.List; import a ...
- 利用SQLite在android上创建数据库
利用SQLite在android上创建数据库 方法: 1.创建我们的数据库类继承SQLiteOpenHelper类 完成相关函数的重写和数据库对象的初始化 public MySQLiteOpenHel ...
- 框架:Rureka
ylbtech-框架:Rureka Eureka是Netflix开发的服务发现框架,本身是一个基于REST的服务,主要用于定位运行在AWS域中的中间层服务,以达到负载均衡和中间层服务故障转移的目的.S ...