功能:将数据进行离散化

可参见博客:https://blog.csdn.net/missyougoon/article/details/83986511 , 例子简易好懂

1、pd.cut函数有7个参数,主要用于对数据从最大值到最小值进行等距划分
 pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False)
参数:
x : 输入待cut的一维数组
bins : cut的段数,一般为整型,但也可以为序列向量(若不在该序列中,则是NaN)。
right : 布尔值,确定右区间是否开闭,取True时右区间闭合
labels : 数组或布尔值,默认为None,用来标识分后的bins,长度必须与结果bins相等,返回值为整数或者对bins的标识
retbins : 布尔值,可选。是否返回数值所在分组,Ture则返回
precision : 整型,bins小数精度,也就是数据以几位小数显示
include_lowest : 布尔类型,是否包含左区间
cut将根据值本身来选择箱子均匀间隔,即每个箱子的间距都是相同的。
>>> factors = np.random.randn(9)
[ 2.12046097 0.24486218 1.64494175 -0.27307614 -2.11238291 2.15422205 -0.46832859 0.16444572 1.52536248]

传入bins参数

>>> pd.cut(factors, 3) #返回每个数对应的分组
[(0.732, 2.154], (-0.69, 0.732], (0.732, 2.154], (-0.69, 0.732], (-2.117, -0.69], (0.732, 2.154], (-0.69, 0.732], (-0.69, 0.732], (0.732, 2.154]]
Categories (3, interval[float64]): [(-2.117, -0.69] < (-0.69, 0.732] < (0.732, 2.154]] >>> pd.cut(factors, bins=[-3,-2,-1,0,1,2,3])
[(2, 3], (0, 1], (1, 2], (-1, 0], (-3, -2], (2, 3], (-1, 0], (0, 1], (1, 2]]
Categories (6, interval[int64]): [(-3, -2] < (-2, -1] < (-1, 0] < (0, 1] (1, 2] < (2, 3]] >>> pd.cut(factors, 3).value_counts() #计算每个分组中含有的数的数量
Categories (3, interval[float64]): [(-2.117, -0.69] < (-0.69, 0.732] < (0.732, 2.154]]
(-2.117, -0.69] 1
(-0.69, 0.732] 4
(0.732, 2.154] 4

传入lable参数

>>> pd.cut(factors, 3,labels=["a","b","c"]) #返回每个数对应的分组,但分组名称由label指示
[c, b, c, b, a, c, b, b, c]
Categories (3, object): [a < b < c] >>> pd.cut(factors, 3,labels=False) #返回每个数对应的分组,但仅显示分组下标
[2 1 2 1 0 2 1 1 2]

传入retbins参数

>>> pd.cut(factors, 3,retbins=True)# 返回每个数对应的分组,且额外返回bins,即每个边界值
([(0.732, 2.154], (-0.69, 0.732], (0.732, 2.154], (-0.69, 0.732], (-2.117, -0.69], (0.732, 2.154], (-0.69, 0.732], (-0.69, 0.732], (0.732, 2.154]]
Categories (3, interval[float64]): [(-2.117, -0.69] < (-0.69, 0.732] < (0.732, 2.154]], array([-2.11664951, -0.69018126, 0.7320204 , 2.15422205]))
2、pd.qcut函数,按照数据出现频率百分比划分,比如要把数据分为四份,则四段分别是数据的0-25%,25%-50%,50%-75%,75%-100%,每个间隔段里的元素个数都是相同的。
pd.qcut(x, q, labels=None, retbins=False, precision=3, duplicates='raise')  #最后一个参数 duplicates='drop'表示若有重复区间则删除
qcut是根据这些值的频率来选择箱子的均匀间隔,即每个箱子中含有的数的数量是相同的。
传入q参数
>>> pd.qcut(factors, 3) #返回每个数对应的分组
[(1.525, 2.154], (-0.158, 1.525], (1.525, 2.154], (-2.113, -0.158], (-2.113, -0.158], (1.525, 2.154], (-2.113, -0.158], (-0.158, 1.525], (-0.158, 1.525]]
Categories (3, interval[float64]): [(-2.113, -0.158] < (-0.158, 1.525] < (1.525, 2.154]] >>> pd.qcut(factors, 3).value_counts() #计算每个分组中含有的数的数量
(-2.113, -0.158] 3
(-0.158, 1.525] 3
(1.525, 2.154] 3

传入lable参数

>>> pd.qcut(factors, 3,labels=["a","b","c"]) #返回每个数对应的分组,但分组名称由label指示
[c, b, c, a, a, c, a, b, b]
Categories (3, object): [a < b < c] >>> pd.qcut(factors, 3,labels=False) #返回每个数对应的分组,但仅显示分组下标
[2 1 2 0 0 2 0 1 1]

传入retbins参数

>>> pd.qcut(factors, 3,retbins=True)# 返回每个数对应的分组,且额外返回bins,即每个边界值
[(1.525, 2.154], (-0.158, 1.525], (1.525, 2.154], (-2.113, -0.158], (-2.113, -0.158], (1.525, 2.154], (-2.113, -0.158], (-0.158, 1.525], (-0.158, 1.525]]
Categories (3, interval[float64]): [(-2.113, -0.158] < (-0.158, 1.525] < (1.525, 2.154],array([-2.113, -0.158 , 1.525, 2.154]))

另一个例子:

import numpy as np
from numpy import *
import pandas as pd
df = pd.DataFrame()
df['data'] = [1,2,2,2,2,6,7,8,9,0]#这里注意箱边界值需要唯一,不然qcut时程序会报错
df['cut']=pd.cut(df['data'],5)
df['qcut']=pd.qcut(df['data'],5)
df.head(10)

运行结果如图:

可以看到cut列各个分段之间间距相等,qcut由于数据中‘2’较多,所以2附近间距较小,2之后的分段间距较大。

pandas之cut(),qcut()的更多相关文章

  1. Pandas中的qcut和cut

    qcut与cut的主要区别: qcut:传入参数,要将数据分成多少组,即组的个数,具体的组距是由代码计算 cut:传入参数,是分组依据.具体见示例 1.qcut方法,参考链接:http://panda ...

  2. pandas之cut

    cut( )用来把一组数据分割成离散的区间. cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_low ...

  3. pandas的基本功能(一)

    第16天pandas的基本功能(一) 灵活的二进制操作 体现在2个方面 支持一维和二维之间的广播 支持缺失值数据处理 四则运算支持广播 +add - sub *mul /div divmod()分区和 ...

  4. pandas的离散化,面元划分

    pd.cut pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=, include_lowest=False) ...

  5. 利用Python进行数据分析-Pandas(第四部分-数据清洗和准备)

    在数据分析和建模的过程中,相当多的时间要用在数据准备上:加载.清理.转换以及重塑上.这些工作会占到分析时间的80%或更多.有时,存储在文件和数据库中的数据的格式不适合某个特定的任务.研究者都选择使用编 ...

  6. pandas - groupby 深入及数据清洗案例

    import pandas as pd import numpy as np 分割-apply-聚合 大数据的MapReduce The most general-purpose GroupBy me ...

  7. pandas 常规操作大全

    那年夏天抓住了蝉的尾巴 gitbook 前言 pandas 抓住 Series (排序的字典), DataFrame (row + 多个 Series) 对象 , 就如同 numpy 里抓住 ndar ...

  8. 数据处理:12个使得效率倍增的pandas技巧

    数据处理:12个使得效率倍增的pandas技巧 1. 背景描述 Python正迅速成为数据科学家偏爱的语言,这合情合理.它拥有作为一种编程语言广阔的生态环境以及众多优秀的科学计算库.如果你刚开始学习P ...

  9. pandas 初识(三)

    Python Pandas 空值 pandas 判断指定列是否(全部)为NaN(空值) import pandas as pd import numpy as np df = pd.DataFrame ...

随机推荐

  1. GitLab 7.5.3 CentOS7安装和SMTP配置

    CentOS 7安装GitLab还是比較简单的,依照官方文档的提示一步一步操作下来.就一个地方须要改动. 參考:GitLab安装说明 在安装好以后,执行 gitlab-ctl reconfigure ...

  2. 利用Ajax调用controller方法并传递参数

    一.背景由于近期工作需要将人脸识别功能与选课系统结合,但是对前端知识了解的很少,只能边做边学了,因此在这边把遇到的一些坑说明一下,希望能帮助到像我一样的初学者 二.具体内容这里采用框架为MVC,如果想 ...

  3. 齐头并进完成任务——Java多线程(一)

    多线程(Multithread)指的是在单个进程中同时运行多个不同的线程,执行不同的任务.多线程意味着一个程序的多行语句块并发执行. 一.实现多线程 1.通过继承Thread类实现多线程. Threa ...

  4. oc20--继承2

    // // Phone.h #import <Foundation/Foundation.h> // 被继承的这个类我们称之为父类/ 超类 @interface Phone : NSObj ...

  5. spring的bean管理(注解和配置文件混合使用)

    1.建三个类,在一个类中引用其他两个类 import javax.annotation.Resource; import org.springframework.beans.factory.annot ...

  6. Node.js:REPL(交互式解释器)

    ylbtech-Node.js:REPL(交互式解释器) 1.返回顶部 1. Node.js REPL(交互式解释器) Node.js REPL(Read Eval Print Loop:交互式解释器 ...

  7. Python3爬虫--两种方法(requests(urllib)和BeautifulSoup)爬取网站pdf

    1.任务简介 本次任务是爬取IJCAI(国际人工智能联合会议)最新2018年的pdf论文文件. 本次编码用到了正则表达式从html里面提取信息,如下对正则表达式匹配规则作简要的介绍. 2.正则表达式规 ...

  8. Redis(三)、Redis主从复制

    一.主从复制 主从复制:主节点负责写数据,从节点负责读数据,从而实现读写分离,提高redis的高可用性. 让一个服务器去复制(replicate)另一个服务器,我们称呼被复制的服务器为主节点(mast ...

  9. C - Puzzles

    Problem description The end of the school year is near and Ms. Manana, the teacher, will soon have t ...

  10. Several Ideas on Perl List Context

    According to Beginning Perl Book published by Tsinghua Pub., the list context appears when you are t ...