pandas之cut(),qcut()
功能:将数据进行离散化
可参见博客:https://blog.csdn.net/missyougoon/article/details/83986511 , 例子简易好懂

>>> factors = np.random.randn(9)
[ 2.12046097 0.24486218 1.64494175 -0.27307614 -2.11238291 2.15422205 -0.46832859 0.16444572 1.52536248]
传入bins参数
>>> pd.cut(factors, 3) #返回每个数对应的分组
[(0.732, 2.154], (-0.69, 0.732], (0.732, 2.154], (-0.69, 0.732], (-2.117, -0.69], (0.732, 2.154], (-0.69, 0.732], (-0.69, 0.732], (0.732, 2.154]]
Categories (3, interval[float64]): [(-2.117, -0.69] < (-0.69, 0.732] < (0.732, 2.154]] >>> pd.cut(factors, bins=[-3,-2,-1,0,1,2,3])
[(2, 3], (0, 1], (1, 2], (-1, 0], (-3, -2], (2, 3], (-1, 0], (0, 1], (1, 2]]
Categories (6, interval[int64]): [(-3, -2] < (-2, -1] < (-1, 0] < (0, 1] (1, 2] < (2, 3]] >>> pd.cut(factors, 3).value_counts() #计算每个分组中含有的数的数量
Categories (3, interval[float64]): [(-2.117, -0.69] < (-0.69, 0.732] < (0.732, 2.154]]
(-2.117, -0.69] 1
(-0.69, 0.732] 4
(0.732, 2.154] 4
传入lable参数
>>> pd.cut(factors, 3,labels=["a","b","c"]) #返回每个数对应的分组,但分组名称由label指示
[c, b, c, b, a, c, b, b, c]
Categories (3, object): [a < b < c] >>> pd.cut(factors, 3,labels=False) #返回每个数对应的分组,但仅显示分组下标
[2 1 2 1 0 2 1 1 2]
传入retbins参数
>>> pd.cut(factors, 3,retbins=True)# 返回每个数对应的分组,且额外返回bins,即每个边界值
([(0.732, 2.154], (-0.69, 0.732], (0.732, 2.154], (-0.69, 0.732], (-2.117, -0.69], (0.732, 2.154], (-0.69, 0.732], (-0.69, 0.732], (0.732, 2.154]]
Categories (3, interval[float64]): [(-2.117, -0.69] < (-0.69, 0.732] < (0.732, 2.154]], array([-2.11664951, -0.69018126, 0.7320204 , 2.15422205]))

>>> pd.qcut(factors, 3) #返回每个数对应的分组
[(1.525, 2.154], (-0.158, 1.525], (1.525, 2.154], (-2.113, -0.158], (-2.113, -0.158], (1.525, 2.154], (-2.113, -0.158], (-0.158, 1.525], (-0.158, 1.525]]
Categories (3, interval[float64]): [(-2.113, -0.158] < (-0.158, 1.525] < (1.525, 2.154]] >>> pd.qcut(factors, 3).value_counts() #计算每个分组中含有的数的数量
(-2.113, -0.158] 3
(-0.158, 1.525] 3
(1.525, 2.154] 3
传入lable参数
>>> pd.qcut(factors, 3,labels=["a","b","c"]) #返回每个数对应的分组,但分组名称由label指示
[c, b, c, a, a, c, a, b, b]
Categories (3, object): [a < b < c] >>> pd.qcut(factors, 3,labels=False) #返回每个数对应的分组,但仅显示分组下标
[2 1 2 0 0 2 0 1 1]
传入retbins参数
>>> pd.qcut(factors, 3,retbins=True)# 返回每个数对应的分组,且额外返回bins,即每个边界值
[(1.525, 2.154], (-0.158, 1.525], (1.525, 2.154], (-2.113, -0.158], (-2.113, -0.158], (1.525, 2.154], (-2.113, -0.158], (-0.158, 1.525], (-0.158, 1.525]]
Categories (3, interval[float64]): [(-2.113, -0.158] < (-0.158, 1.525] < (1.525, 2.154],array([-2.113, -0.158 , 1.525, 2.154]))
另一个例子:
import numpy as np
from numpy import *
import pandas as pd
df = pd.DataFrame()
df['data'] = [1,2,2,2,2,6,7,8,9,0]#这里注意箱边界值需要唯一,不然qcut时程序会报错
df['cut']=pd.cut(df['data'],5)
df['qcut']=pd.qcut(df['data'],5)
df.head(10)
运行结果如图:
可以看到cut列各个分段之间间距相等,qcut由于数据中‘2’较多,所以2附近间距较小,2之后的分段间距较大。

pandas之cut(),qcut()的更多相关文章
- Pandas中的qcut和cut
qcut与cut的主要区别: qcut:传入参数,要将数据分成多少组,即组的个数,具体的组距是由代码计算 cut:传入参数,是分组依据.具体见示例 1.qcut方法,参考链接:http://panda ...
- pandas之cut
cut( )用来把一组数据分割成离散的区间. cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_low ...
- pandas的基本功能(一)
第16天pandas的基本功能(一) 灵活的二进制操作 体现在2个方面 支持一维和二维之间的广播 支持缺失值数据处理 四则运算支持广播 +add - sub *mul /div divmod()分区和 ...
- pandas的离散化,面元划分
pd.cut pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=, include_lowest=False) ...
- 利用Python进行数据分析-Pandas(第四部分-数据清洗和准备)
在数据分析和建模的过程中,相当多的时间要用在数据准备上:加载.清理.转换以及重塑上.这些工作会占到分析时间的80%或更多.有时,存储在文件和数据库中的数据的格式不适合某个特定的任务.研究者都选择使用编 ...
- pandas - groupby 深入及数据清洗案例
import pandas as pd import numpy as np 分割-apply-聚合 大数据的MapReduce The most general-purpose GroupBy me ...
- pandas 常规操作大全
那年夏天抓住了蝉的尾巴 gitbook 前言 pandas 抓住 Series (排序的字典), DataFrame (row + 多个 Series) 对象 , 就如同 numpy 里抓住 ndar ...
- 数据处理:12个使得效率倍增的pandas技巧
数据处理:12个使得效率倍增的pandas技巧 1. 背景描述 Python正迅速成为数据科学家偏爱的语言,这合情合理.它拥有作为一种编程语言广阔的生态环境以及众多优秀的科学计算库.如果你刚开始学习P ...
- pandas 初识(三)
Python Pandas 空值 pandas 判断指定列是否(全部)为NaN(空值) import pandas as pd import numpy as np df = pd.DataFrame ...
随机推荐
- Python学习-生成器 - Generator
简单来说,generator是一个能够返回迭代器对象的函数. yield的使用: 在python中,当你定义一个函数,使用了yield关键字时,这个函数就是一个生成器,它的执行会和其他普通的函数有很多 ...
- 【网络协议】ICMP协议、Ping、Traceroute
ICMP协议 ICMP常常被觉得是IP层的一个组成部分,它是网络层的一个协议.它传递差错报文以及其它须要注意的信息.ICMP报文通常被IP层或更高层(TCP.UDP等)使用,它是在IP数据报内 ...
- 【剑指offer】无聊的1+2+...+n
转载请注明出处:http://blog.csdn.net/ns_code/article/details/27964027 题目描写叙述: 求1+2+3+...+n,要求不能使用乘除法.for.whi ...
- C++实现顺序栈的基本功能
栈是限定仅在表头进行插入和删除操作的线性表.有着先进后出的特点(FILO): 如今我来动手实现栈的基本本功能练练手: 定义栈的头文件例如以下: #ifndef CSTOCK_H_ #define CS ...
- JPA相关注解
JPA注解 一.基本注解 1.表相关 @Entity 仅仅要加了这个注解就具备了表和实体的映射关系,表名就是实体名 @Table(name="表名") 一般和实体 ...
- java 命令行 编译 运行程序
学习java使用IDE前最好先用用命令行的javac.java来跑一跑简单的程序,这样能够熟悉一下包管理对.class文件路径的影响. 我们先写一段简单的代码: package com.csdn.lk ...
- web请求乱码问题总结
问题1:springmvc通过@ResponseBody向页面返回值(包括汉字)时,乱码 解决方案: springmvc3.2之后可以声明注解驱动器(不知道是不是这么翻译)的时候的控制编码的转换,结果 ...
- hdoj--1083--Courses(最大匹配)
Courses Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total ...
- UVA-1335(UVALive-3177) Beijing Guards 贪心 二分
题面 题意:有n个人为成一个圈,其中第i个人想要r[i]种不同的礼物,相邻的两个人可以聊天,炫耀自己的礼物.如果两个相邻的人拥有同一种礼物,则双方都会很不高兴,问最少需要多少种不同的礼物才能满足所有人 ...
- JavaScript DOM 总结
一.DOM基础1.节点(node)层次Document--最顶层的节点,所有的其他节点都是附属于它的.DocumentType--DTD引用(使用<!DOCTYPE>语法)的对象表现形式, ...