前言:
        一个完备的模式识别系统,必然包含一个模式识别模型,此外还要附加一个评价模型,以及为了构建识别模型而构建的学习模型,并选择在学习模型中使用的学习方法。

否则

 w=w

这样,)那样的δ递推,也就是灵敏度反向传播回来。另外,需要乘以输入patch与输出像素之间连接的权值,这个权值实际上就是卷积核的权值(已旋转的)。

在这之前,我们需要先将核旋转一下,让卷积函数可以实施互相关计算。另外,我们需要对卷积边界进行处理,但在Matlab里面,就比较容易处理。Matlab中全卷积会对缺少的输入像素补0。

到这里,我们就可以对b和β计算梯度了。首先,加性基b的计算和上面卷积层的一样,对灵敏度map中所有元素加起来就可以了:

而对于乘性偏置β,因为涉及到了在前向传播过程中下采样map的计算,所以我们最好在前向的过程中保存好这些maps,这样在反向的计算中就不用重新计算了。我们定义:

这样,对β的梯度就可以用下面的方式计算:

3.3、Learning Combinations of Feature Maps学习特征map的组合

大部分时候,通过卷积多个输入maps,然后再对这些卷积值求和得到一个输出map,这样的效果往往是比较好的。在一些文献中,一般是人工选择哪些输入maps去组合得到一个输出map。但我们这里尝试去让CNN在训练的过程中学习这些组合,也就是让网络自己学习挑选哪些输入maps来计算得到输出map才是最好的。我们用αij表示在得到第j个输出map的其中第i个输入map的权值或者贡献。这样,第j个输出map可以表示为:

需要满足约束:

这些对变量αij的约束可以通过将变量αij表示为一个组无约束的隐含权值cij的softmax函数来加强。(因为softmax的因变量是自变量的指数函数,他们的变化率会不同)。

因为对于一个固定的j来说,每组权值cij都是和其他组的权值独立的,所以为了方面描述,我们把下标j去掉,只考虑一个map的更新,其他map的更新是一样的过程,只是map的索引j不同而已。

Softmax函数的导数表示为:

这里的δ是Kronecker delta。对于误差对于第l层变量αi的导数为:

最后就可以通过链式规则去求得代价函数关于权值ci的偏导数了:

3.3.1、Enforcing Sparse Combinations加强稀疏性组合

为了限制αi是稀疏的,也就是限制一个输出map只与某些而不是全部的输入maps相连。我们在整体代价函数里增加稀疏约束项Ω(α)。对于单个样本,重写代价函数为:

然后寻找这个规则化约束项对权值ci求导的贡献。规则化项Ω(α)对αi求导是:

然后,通过链式法则,对ci的求导是:

所以,权值ci最后的梯度是:

3.4、Making it Fast with MATLAB

CNN的训练主要是在卷积层和子采样层的交互上,其主要的计算瓶颈是:

1)前向传播过程:下采样每个卷积层的maps;

2)反向传播过程:上采样高层子采样层的灵敏度map,以匹配底层的卷积层输出maps的大小;

3)sigmoid的运用和求导。

对于第一和第二个问题,我们考虑的是如何用Matlab内置的图像处理函数去实现上采样和下采样的操作。对于上采样,imresize函数可以搞定,但需要很大的开销。一个比较快速的版本是使用Kronecker乘积函数kron。通过一个全一矩阵ones来和我们需要上采样的矩阵进行Kronecker乘积,就可以实现上采样的效果。对于前向传播过程中的下采样,imresize并没有提供在缩小图像的过程中还计算nxn块内像素的和的功能,所以没法用。一个比较好和快速的方法是用一个全一的卷积核来卷积图像,然后简单的通过标准的索引方法来采样最后卷积结果。例如,如果下采样的域是2x2的,那么我们可以用2x2的元素全是1的卷积核来卷积图像。然后再卷积后的图像中,我们每个2个点采集一次数据,y=x(1:2:end,1:2:end),这样就可以得到了两倍下采样,同时执行求和的效果。

对于第三个问题,实际上有些人以为Matlab中对sigmoid函数进行inline的定义会更快,其实不然,Matlab与C/C++等等语言不一样,Matlab的inline反而比普通的函数定义更费时间。所以,我们可以直接在代码中使用计算sigmoid函数及其导数的真实代码。

总结

此文主要描述了基本CNN的反向传播过程。包括作为分类器的SoftMax层和FCN层,以及作为特征提取的卷积层和Pooling层的参数更新。

AI:IPPR的模式生成-学习/训练方式(基本结构)的更多相关文章

  1. 装饰者模式的学习(c#) EF SaveChanges() 报错(转载) C# 四舍五入 保留两位小数(转载) DataGridView样式生成器使用说明 MSSQL如何将查询结果拼接成字符串 快递查询 C# 通过smtp直接发送邮件 C# 带参访问接口,WebClient方式 C# 发送手机短信 文件 日志 写入 与读取

    装饰者模式的学习(c#) 案例转自https://www.cnblogs.com/stonefeng/p/5679638.html //主体基类 using System;using System.C ...

  2. 【AI in 美团】深度学习在OCR中的应用

    AI(人工智能)技术已经广泛应用于美团的众多业务,从美团App到大众点评App,从外卖到打车出行,从旅游到婚庆亲子,美团数百名最优秀的算法工程师正致力于将AI技术应用于搜索.推荐.广告.风控.智能调度 ...

  3. 一张图看懂AI、机器学习和深度学习的区别

    AI(人工智能)是未来,是科幻小说,是我们日常生活的一部分.所有论断都是正确的,只是要看你所谈到的AI到底是什么. 例如,当谷歌DeepMind开发的AlphaGo程序打败韩国职业围棋高手Lee Se ...

  4. ICML论文|阿尔法狗CTO讲座: AI如何用新型强化学习玩转围棋扑克游戏

    今年8月,Demis Hassabis等人工智能技术先驱们将来到雷锋网“人工智能与机器人创新大会”.在此,我们为大家分享David Silver的论文<不完美信息游戏中的深度强化学习自我对战&g ...

  5. 中文译文:Minerva-一种可扩展的高效的深度学习训练平台(Minerva - A Scalable and Highly Efficient Training Platform for Deep Learning)

    Minerva:一个可扩展的高效的深度学习训练平台 zoerywzhou@gmail.com http://www.cnblogs.com/swje/ 作者:Zhouwan  2015-12-1 声明 ...

  6. AI安全初探——利用深度学习检测DNS隐蔽通道

    AI安全初探——利用深度学习检测DNS隐蔽通道 目录 AI安全初探——利用深度学习检测DNS隐蔽通道 1.DNS 隐蔽通道简介 2. 算法前的准备工作——数据采集 3. 利用深度学习进行DNS隐蔽通道 ...

  7. AI工程师职业规划和学习路线完整版

    AI工程师职业规划和学习路线完整版   如何成为一名机器学习算法工程师 成为一名合格的开发工程师不是一件简单的事情,需要掌握从开发到调试到优化等一系列能 力,这些能力中的每一项掌握起来都需要足够的努力 ...

  8. 一文读懂对抗生成学习(Generative Adversarial Nets)[GAN]

    一文读懂对抗生成学习(Generative Adversarial Nets)[GAN] 0x00 推荐论文 https://arxiv.org/pdf/1406.2661.pdf 0x01什么是ga ...

  9. Stanford大学机器学习公开课(五):生成学习算法、高斯判别、朴素贝叶斯

    (一)生成学习算法 在线性回归和Logistic回归这种类型的学习算法中我们探讨的模型都是p(y|x;θ),即给定x的情况探讨y的条件概率分布.如二分类问题,不管是感知器算法还是逻辑回归算法,都是在解 ...

随机推荐

  1. STM32定时器配置(TIM1-TIM8)高级定时器+普通定时器,定时计数模式下总结

    文章结构: ——> 一.定时器基本介绍 ——> 二.普通定时器详细介绍TIM2-TIM5 ——> 三.定时器代码实例 一.定时器基本介绍  之前有用过野火的学习板上面讲解很详细,所以 ...

  2. 从NLP任务中文本向量的降维问题,引出LSH(Locality Sensitive Hash 局部敏感哈希)算法及其思想的讨论

    1. 引言 - 近似近邻搜索被提出所在的时代背景和挑战 0x1:从NN(Neighbor Search)说起 ANN的前身技术是NN(Neighbor Search),简单地说,最近邻检索就是根据数据 ...

  3. 【MFC Programming】 Using Dialog To Set A Correlate Menu

    This blog will show how to display a menu we designed in a dialog. 1.Insert a new dialog& a new ...

  4. TASKLIST 显示计算机上的所有进程

    Tasklist"是 winxp/win2003/vista/win7/win8下的命令,用来显示运行在本地或远程计算机上的所有进程,带有多个执行参数. 使用格式 tasklist [/s ...

  5. centos7.0_redhat7.0安装vncserver和Desktop桌面

    http://blog.51cto.com/gushiren/1681616 https://blog.csdn.net/techsupporter/article/details/50628399

  6. [bzoj1010][HNOI2008]玩具装箱toy_斜率优化dp

    玩具装箱toy bzoj-1010 HNOI-2008 题目大意:P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一 ...

  7. [转]十五天精通WCF——第六天 你必须要了解的3种通信模式

    wcf已经说到第六天了,居然还没有说到这玩意有几种通信模式,惭愧惭愧,不过很简单啦,单向,请求-响应,双工模式,其中的第二种“请求-响应“ 模式,这个大家不用动脑子都清楚,这一篇我大概来分析下. 一: ...

  8. 腾讯面试题:A.txt和B.txt两个文件,A有1亿个qq号,B有100万个,用代码实现交、并、差

    在STL中关于有序序列有这么四个算法: set_union(beg, end, beg, end2, dest);                    //求并集A∪B set_union(beg, ...

  9. robin 今天来南大了

    今天非常高兴,在学校的体育馆见到了李彦宏博士. 这是第一次真实的见到了曾经仅仅能在媒体上才干够见到的人,真实,感觉非常好. 我算不上李彦宏的粉丝,也不是非常热衷于百度这个公司,可是我如今仍然心情澎湃. ...

  10. Choose the best route HDU杭电2680【dijkstra算法 || SPFA】

    http://acm.hdu.edu.cn/showproblem.php?pid=2680 Problem Description One day , Kiki wants to visit one ...