ACM训练联盟周赛(第三场)
A.Teemo's bad day
Today is a bad day. Teemo is scolded badly by his teacher because he didn't do his homework.But Teemo is very self-confident, he tells the teacher that the problems in the homework are too simple to solve. So the teacher gets much angrier and says"I will choose a problem in the homework, if you can't solve it, I will call you mother! "
The problem is that:
There is an array A which contains n integers, and an array B which also contains n integers. You can pay one dollar to buy a card which contains two integers a1 and a2, The card can arbitrary number of times transform a single integer a1 to a2 and vise-versa on both array A and Array B. Please calculate the minimum dollars you should pay to make the two array same(For every 1<=i<=n,A[i]=B[i]);
Input Format
- The first line of the input contains an integer T(1<=T<=10), giving the number of test cases.
- For every test case, the first line contains an integer n(1<=n<=500000). The second line contains n integers. The i th integer represents A[i](1<=A[i]<=100000). And the third line contains n integers. The i th integer represents B[i](1<=B[i]<=100000).
Output Format
For each test case, output an integer which means the minimum dollars you should pay in a line.
样例输入
1
5
1 1 2 3 2
1 2 3 1 1
样例输出
2
将不匹配的联通跑bfs就可以
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <vector>
#include <queue>
#include <stack>
#include <cstdlib>
#include <iomanip>
#include <cmath>
#include <cassert>
#include <ctime>
#include <map>
#include <set>
using namespace std;
#pragma comment(linker, "/stck:1024000000,1024000000")
#pragma GCC diagnostic error "-std=c++11"
#define lowbit(x) (x&(-x))
#define max(x,y) (x>=y?x:y)
#define min(x,y) (x<=y?x:y)
#define MAX 100000000000000000
#define MOD 1000000007
#define esp 1e-9
#define pi acos(-1.0)
#define ei exp(1)
#define PI 3.1415926535897932384626433832
#define ios() ios::sync_with_stdio(true)
#define INF 0x3f3f3f3f
#define mem(a) (memset(a,0,sizeof(a)))
int dcmp(double x){return fabs(x)<esp?:x<?-:;}
typedef long long ll;
int t,n,a[],b[];
int vis[],c[];
vector<int>v[];
void dfs(int u){
vis[u]=;
for(auto t:v[u]){
if(!vis[t]) dfs(t);
}
}
int main()
{
scanf("%d",&t);
while(t--)
{
memset(vis,,sizeof(vis));
memset(c,,sizeof(c));
scanf("%d",&n);
for(int i=;i<=;i++)
v[i].clear();
for(int i=;i<n;i++) scanf("%d",&a[i]);
for(int i=;i<n;i++){
scanf("%d",&b[i]);
if(a[i]==b[i]) continue;
c[a[i]]=;
c[b[i]]=;
v[a[i]].push_back(b[i]);
v[b[i]].push_back(a[i]);
}
int ans=,pos=;
for(int i=;i<=;i++)
{
if(c[i]){
pos++;
if(!vis[i]){
dfs(i);
ans++;
}
}
}
printf("%d\n",pos-ans);
}
return ;
}
B.Teemo's hard problem
Teemo starts to do homework everyday. Today, he meets a hard problem when doing his homework.
There's an array A which contains n integers(for every 1<=i<=n, A[i] = 1 or A[i]= 2), you can choose an interval [l,r](1<=l<=r<=n), then reverse it so that the length of the longest non-decreasing subsequence of the new sequence is maximum.
Input Format
- The first line of the input contains an integer T(1=<T<=10), giving the number of test cases.
- For every test case, the first line contains an integer n(1<=n<=2000). The second line contains n integers. The i th integer represents A[i](1<=A[i]<=2).
Output Format
Print a single integer, which means the maximum possible length of the longest non-decreasing subsequence of the new sequence.
样例输入
1
4
1 2 1 2
样例输出
4
暴力求出正反最长上升子序列,枚举区间
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <vector>
#include <queue>
#include <stack>
#include <cstdlib>
#include <iomanip>
#include <cmath>
#include <cassert>
#include <ctime>
#include <map>
#include <set>
using namespace std;
#pragma comment(linker, "/stck:1024000000,1024000000")
#pragma GCC diagnostic error "-std=c++11"
#define lowbit(x) (x&(-x))
#define max(x,y) (x>=y?x:y)
#define min(x,y) (x<=y?x:y)
#define MAX 100000000000000000
#define MOD 1000000007
#define esp 1e-9
#define pi acos(-1.0)
#define ei exp(1)
#define PI 3.1415926535897932384626433832
#define ios() ios::sync_with_stdio(true)
#define INF 0x3f3f3f3f
#define mem(a) (memset(a,0,sizeof(a)))
int dcmp(double x){return fabs(x)<esp?:x<?-:;}
typedef long long ll;
int t,n,a[];
int dpf[][],dpl[][];
int b[],ans,pos;
int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
memset(dpf,,sizeof(dpf));
memset(dpl,,sizeof(dpl));
for(int i=;i<=n;i++)
{
pos=;
memset(b,,sizeof(b));
for(int j=i;j<=n;j++)
{
if(a[j]>=b[pos]) b[++pos]=a[j];
else
{
int k=upper_bound(b+,b+pos+,a[j])-b;
b[k]=a[j];
}
dpf[i][j]=pos;
}
}
for(int i=n;i;i--)
{
pos=;
memset(b,,sizeof(b));
for(int j=i;j;j--)
{
if(a[j]>=b[pos]) b[++pos]=a[j];
else
{
int k=upper_bound(b+,b+pos+,a[j])-b;
b[k]=a[j];
}
dpl[j][i]=pos;
}
}
ans=;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
ans=max(ans,dpf[][n]-dpf[i][j]+dpl[i][j]);
printf("%d\n",ans);
}
return ;
}
C.Teemo's tree problem
There is an apple tree in Teemo's yard. It contains n nodes and n-1 branches, and the node 1 is always the root of the tree. Today, Teemo's father will go out for work. So Teemo should do his father's job in the family: Cut some branches to make the tree more beautiful. His father's told him that he should cut some branches, finally, the tree should just contains q branches. But when Teemo start to cut, he realizes that there are some apples in the branches( For example, there are 10 apples in the branches which connecting node 1 and node 4). So Teemo not only wants to achieve his father's order, but also wants to preserve apples as much as possible. Can you help him?
2 5
\ /
3 4
\ /
1
Input Format
- The first line of the input contains an integer T(1<=T<=10) which means the number of test cases.
- For
each test case, The first line of the input contains two integers
n,q(3<=n<=100,1<=q<=n-1), giving the number of the node and
the number of branches that the tree should preserve. - In the
next n-1 line, each line contains three integers
u,v,w(1<=u<=n,1<=v<=n,u!=v,1<=w<=100000), which means
there is a branch connecting node u and node v, and there are w apple(s)
on it.
Output Format
Print a single integer, which means the maximum possible number of apples can be preserved.
样例输入
1
5 2
1 3 1
1 4 10
2 3 20
3 5 20
样例输出
21
树型DP,只有n-1边,一遍dfs,把边的权值赋给子节点,1结点赋成无限大
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <vector>
#include <queue>
#include <stack>
#include <cstdlib>
#include <iomanip>
#include <cmath>
#include <cassert>
#include <ctime>
#include <map>
#include <ext/rope>
#include <set>
using namespace std;
#pragma comment(linker, "/stck:1024000000,1024000000")
#pragma GCC diagnostic error "-std=c++11"
#define lowbit(x) (x&(-x))
#define max(x,y) (x>=y?x:y)
#define min(x,y) (x<=y?x:y)
#define MAX 100000000000000000
#define MOD 1000000007
#define esp 1e-9
#define pi acos(-1.0)
#define ei exp(1)
#define PI 3.1415926535897932384626433832
#define ios() ios::sync_with_stdio(true)
#define INF 1044266560
#define mem(a) (memset(a,0,sizeof(a)))
int dcmp(double x){return fabs(x)<esp?:x<?-:;}
typedef long long ll;
typedef pair<int,int> P;
int n,m,t,f[][];
int vis[],val[],ans;
vector<P>v[];
void solve(int u)
{
vis[u]=;
for(int i=;i<v[u].size();i++)
{
if(!vis[v[u][i].first]){
val[v[u][i].first]=v[u][i].second;
solve(v[u][i].first);
}
}
}
int dfs(int u,int fa)
{
vis[u]=;
for(int i=;i<v[u].size();i++)
{
if(v[u][i].first==fa) continue;
vis[u]+=dfs(v[u][i].first,u);
}
f[u][]=val[u];
for(int i=;i<v[u].size();i++){
if(v[u][i].first==fa) continue;
for(int j=vis[u];j>=;j--){
for(int k=;k<j && k<=vis[v[u][i].first];k++)
f[u][j]=max(f[u][j],f[u][j-k]+f[v[u][i].first][k]);
}
}
if(vis[u]>=m) ans=max(ans,f[u][m]);
return vis[u];
}
int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
memset(vis,,sizeof(vis));
memset(val,,sizeof(val));
memset(f,,sizeof(f));
for(int i=;i<=n;i++)
v[i].clear();
for(int i=,x,y,z;i<n;i++)
{
scanf("%d%d%d",&x,&y,&z);
v[x].push_back(P(y,z));
v[y].push_back(P(x,z));
}
solve();
memset(vis,,sizeof(vis));
val[]=;
m++;
ans=-;
dfs(,);
printf("%d\n",ans-val[]);
}
return ;
}
F.Teemo's dream
Teemo decides to use his money to conquer the universe.
It is known that there are m planets that humans can reach at present. They are numbered from 1 to m. Teemo bought n kinds of gateways. Their IDs are a1, a2, ..., an, the gateway whose ID is ai can transmit Teemo to the stars numbered ai,2ai, 3ai, ..., k*ai (1<=k*ai<=m, k is a positive integer), now Teemo wants to know, how many planets can he reach?
Input Format
On the firstline one positive number: the number of test cases, at most 20. After that per test case:
- One line contains two integers n and m, (1 <= n <= 15, 1<= m < = 1e9), respectively represent the number of the gateway, the number of the stars that humans can reach.
- One line contains n integers, the i-th integer a[i], indicating that the ID of the i-th gateway is a[i], (2<=a[i]<=1e9).
Ouput Format
Per test case:
- One line contains an integer, which indicates how many planets Teemo can reach at most.
容斥定理
1到m包含多少个a[i]的倍数
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <vector>
#include <queue>
#include <stack>
#include <cstdlib>
#include <iomanip>
#include <cmath>
#include <cassert>
#include <ctime>
#include <map>
#include <set>
using namespace std;
#pragma comment(linker, "/stck:1024000000,1024000000")
#pragma GCC diagnostic error "-std=c++11"
#define lowbit(x) (x&(-x))
#define max(x,y) (x>=y?x:y)
#define min(x,y) (x<=y?x:y)
#define MAX 100000000000000000
#define MOD 1000000007
#define esp 1e-9
#define pi acos(-1.0)
#define ei exp(1)
#define PI 3.1415926535897932384626433832
#define ios() ios::sync_with_stdio(true)
#define INF 0x3f3f3f3f
#define mem(a) (memset(a,0,sizeof(a)))
int dcmp(double x){return fabs(x)<esp?:x<?-:;}
typedef long long ll;
ll t,n,m;
ll a[],b[],ans=;
ll lcm(ll x,ll y){
return x/__gcd(x,y)*y;
}
void solve(int n,int l,int r,int k)
{
for(int i=n;i>=l;i--)
{
b[l-]=a[i-];
if(l>) solve(i-,l-,r,k);
else{
ll pos=lcm(b[r-],b[r-]);
for(int j=r-;j>=;j--)
{
pos=lcm(pos,b[j]);
if(pos>m) goto eg;
}
if(k) ans+=m/pos;
else ans-=m/pos;
eg:;
}
}
}
int main()
{
scanf("%lld",&t);
while(t--)
{
scanf("%lld%lld",&n,&m);
ans=;
for(int i=;i<n;i++)
{
scanf("%lld",&a[i]);
ans+=m/a[i];
}
for(int i=;i<=n;i++)
solve(n,i,i,i&);
printf("%lld\n",ans);
}
return ;
}
G.Teemo's convex polygon
Teemo is very interested in convex polygon. There is a convex n-sides polygon, and Teemo connect every two points as diagonal lines, and he want to kown how many segments which be divided into intersections. Teemo ensure that any three diagonals do not intersect at a point.
As the result may be very large, please output the result mod 1000000007.
Input Format
The
input contains several test cases, and the first line is a positive
integer T indicating the number of test cases which is up to 100.
For each test case, the first line contains an integer n(3<=n<=10^18).
Output Format
For each test case, output a line containing an integer that indicates the answer.
样例输入
2
3
4
样例输出
0
4
数据保证没有三条线段交于一点,公式为(n^4-6n^3+17n^2-24n)/12
import java.math.BigInteger;
import java.util.Scanner;
public class Main{
static Scanner cin = new Scanner(System.in);
static BigInteger[] a = new BigInteger[10];
public static void main(String args[]){
long n,m;
m = cin.nextLong();
while(m>0){
m =m-1;
n = cin.nextLong();
a[1] = BigInteger.valueOf(n);
a[2] = a[1].multiply(BigInteger.valueOf(n));
a[3] = a[2].multiply(BigInteger.valueOf(n));
a[4] = a[3].multiply(BigInteger.valueOf(n));
a[3] = a[3].multiply(BigInteger.valueOf(6));
a[2] = a[2].multiply(BigInteger.valueOf(17));
a[1] = a[1].multiply(BigInteger.valueOf(24));
a[5] = a[4].subtract(a[3]);
a[5] = a[5].add(a[2]);
a[5] = a[5].subtract(a[1]);
a[5] = a[5].divide(BigInteger.valueOf(12));
System.out.println(a[5].mod(BigInteger.valueOf(1000000007)));
}
}
}
J.Teemo's formula
Teemo has a formula and he want to calculate it quickly.
The formula is .
As the result may be very large, please output the result mod 1000000007.
Input Format
The
input contains several test cases, and the first line is a positive
integer T indicating the number of test cases which is up to 10^5.
For each test case, the first line contains an integer n(1<=n<=10^9).
Output Format
For each test case, output a line containing an integer that indicates the answer.
样例输入
2
2
3
样例输出
6
24
组合公式n(n+1)2^(n-2)
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <vector>
#include <queue>
#include <stack>
#include <cstdlib>
#include <iomanip>
#include <cmath>
#include <cassert>
#include <ctime>
#include <map>
#include <ext/rope>
#include <set>
using namespace std;
#pragma comment(linker, "/stck:1024000000,1024000000")
#pragma GCC diagnostic error "-std=c++11"
#define lowbit(x) (x&(-x))
#define max(x,y) (x>=y?x:y)
#define min(x,y) (x<=y?x:y)
#define MAX 100000000000000000
#define MOD 1000000007
#define esp 1e-9
#define pi acos(-1.0)
#define ei exp(1)
#define PI 3.1415926535897932384626433832
#define ios() ios::sync_with_stdio(true)
#define INF 1044266560
#define mem(a) (memset(a,0,sizeof(a)))
int dcmp(double x){return fabs(x)<esp?:x<?-:;}
typedef long long ll;
ll n,t;
ll quick_pow(ll x,ll y)
{
ll ans=;
while(y){
if(y&) ans=ans*x%MOD;
y>>=;
x=x*x%MOD;
}
return ans;
}
int main()
{
scanf("%lld",&t);
while(t--)
{
scanf("%lld",&n);
if(n==) {printf("1\n");continue;}
printf("%lld\n",n*(n+)%MOD*quick_pow(,n-)%MOD);
}
return ;
}
K.Teemo's reunited
Teemo likes to drink raspberry juice. He even spent some of his spare time tomake the raspberry juice himself. The way to make the raspberries juice is simple. You just have to press the raspberries through a fine sieve.
Unfortunately,today Teemo was splited in several pieces by the sieve which was used to makethe raspberry juice. The pieces were losted in the huge two-dimensional map. Onlywhen all the pieces gather, can Teemo drink the raspberry juice he made today.
Teemo's piece can only move parallel to the x or y axis, or he would be hated by theraspberry Queen and will not be able to have raspberry juice any more. One of the piece of Teemo should carry the raspberry juice.In order to avoid spilling, this piece cannot move anymore.
Teemo’spiece are lazy, they’d like to make the sum of paths be the minimal. Your task is to find the minimal sum of the paths.
InputFormat
The
first line contains a integer n (1<=n<=100000) represent the
number of thepieces. Then next n lines. Each line contains the pairs of
xi, yi(-1000000000<xi,yi<1000000000) in turn as points by order.
OutputFormat
Printa single line contains the minimal sum of the paths.
样例输入1
3
1 0
2 0
3 0
样例输出1
2
样例输入2
5
4 1
4 4
9 2
2 9
2 6
样例输出2
21
在这些点中找一个点使得所有的点到此点的曼哈顿距离最小,分别对x,y排序
枚举x,y找出不同的x,y对应的最小值,最后枚举点使得x+y最小
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <vector>
#include <queue>
#include <stack>
#include <cstdlib>
#include <iomanip>
#include <cmath>
#include <cassert>
#include <ctime>
#include <map>
#include <set>
using namespace std;
#pragma comment(linker, "/stck:1024000000,1024000000")
#pragma GCC diagnostic error "-std=c++11"
#define lowbit(x) (x&(-x))
#define max(x,y) (x>=y?x:y)
#define min(x,y) (x<=y?x:y)
#define MAX 100000000000000000
#define MOD 1000000007
#define esp 1e-9
#define pi acos(-1.0)
#define ei exp(1)
#define PI 3.1415926535897932384626433832
#define ios() ios::sync_with_stdio(true)
#define INF 0x3f3f3f3f
#define mem(a) (memset(a,0,sizeof(a)))
int dcmp(double x){return fabs(x)<esp?:x<?-:;}
typedef long long ll;
const int lower=;
struct Point
{
ll x,y,num;
}e[];
ll sum_x[],sum_y[],n,sumx=,sumy=;
ll l[],r[];
bool cmpx(const Point &a,const Point &b){return a.x<b.x;}
bool cmpy(const Point &a,const Point &b){return a.y<b.y;}
int main()
{
scanf("%lld",&n);
for(int i=;i<=n;i++)
{
scanf("%lld%lld",&e[i].x,&e[i].y);
e[i].x+=lower;
e[i].y+=lower;
e[i].num=i;
sumx+=e[i].x;
sumy+=e[i].y;
}
sort(e+,e++n,cmpx);
for(int i=;i<=n;i++)
sum_x[i]=sum_x[i-]+e[i].x;
for(int i=;i<=n;i++)
{
ll x=e[i].x;
ll left=(i-)*x-sum_x[i-];
ll right=sumx-sum_x[i]-(n-i)*x;
l[e[i].num]=left+right;
}
sort(e+,e++n,cmpy);
for(int i=;i<=n;i++)
sum_y[i]=sum_y[i-]+e[i].y;
for(int i=;i<=n;i++)
{
ll y=e[i].y;
ll left=(i-)*y-sum_y[i-];
ll right=sumy-sum_y[i]-(n-i)*y;
r[e[i].num]=left+right;
}
ll inf=l[]+r[];
for(int i=;i<=n;i++)
inf=min(inf,l[i]+r[i]);
printf("%lld\n",inf);
return ;
}
ACM训练联盟周赛(第三场)的更多相关文章
- 计蒜客 28449.算个欧拉函数给大家助助兴-大数的因子个数 (HDU5649.DZY Loves Sorting) ( ACM训练联盟周赛 G)
ACM训练联盟周赛 这一场有几个数据结构的题,但是自己太菜,不会树套树,带插入的区间第K小-替罪羊套函数式线段树, 先立个flag,BZOJ3065: 带插入区间K小值 计蒜客 Zeratul与Xor ...
- 计蒜客 ACM训练联盟周赛 第一场 Christina式方格取数 思维
助手Christina发明了一种方格取数的新玩法:在n*m的方格棋盘里,每个格子里写一个数.两个人轮流给格子染色,直到所有格子都染了色.在所有格子染色完后,计算双方的分数.对于任意两个相邻(即有公共边 ...
- 计蒜客 ACM训练联盟周赛 第一场 从零开始的神棍之路 暴力dfs
题目描述 ggwdwsbs最近被Zeratul和Kyurem拉入了日本麻将的坑.现在,ggwdwsbs有13张牌,Kyurem又打了一张,加起来有14张牌.ggwdwsbs想拜托你帮他判断一下,这14 ...
- 计蒜客 ACM训练联盟周赛 第一场 Alice和Bob的Nim游戏 矩阵快速幂
题目描述 众所周知,Alice和Bob非常喜欢博弈,而且Alice永远是先手,Bob永远是后手. Alice和Bob面前有3堆石子,Alice和Bob每次轮流拿某堆石子中的若干个石子(不可以是0个), ...
- ACM训练联盟周赛(第一场)
B:Zeratul与Xor 题目描述 Xor(按位异或),对应C++中的“^”运算符. Zeratul给出了一个数列A[n](n≤105),要做q(q≤105)组动作,这些动作包括: 1 a:数列中 ...
- ACM训练联盟周赛 G. Teemo's convex polygon
65536K Teemo is very interested in convex polygon. There is a convex n-sides polygon, and Teemo co ...
- 计蒜客 28437.Big brother said the calculation-线段树+二分-当前第k个位置的数 ( ACM训练联盟周赛 M)
M. Big brother said the calculation 通过线段树维护. 这个题和杭电的一道题几乎就是一样的题目.HDU5649.DZY Loves Sorting 题意就是一个n的排 ...
- ACM训练联盟周赛 A. Teemo's bad day
65536K Today is a bad day. Teemo is scolded badly by his teacher because he didn't do his homework ...
- ACM训练联盟周赛 K. Teemo's reunited
Teemo likes to drink raspberry juice. He even spent some of his spare time tomake the raspberry jui ...
随机推荐
- Making ViewState More Secure
Unencrypted view state in ASP.NET 2.0 could leak sensitive information https://www.rapid7.com/db/vul ...
- C#中的CSP(Communicating sequential processes)
说起Golang(后面统称为Go),就想到他的高并发特性,在深入一些就是 Goroutine.在大家被它优雅的语法和简洁的代码实现的高并发程序所折服时,其实C#/.NET也可以很容易的做到.今天我们来 ...
- Laravel-HTTP-验证
Laravel-HTTP-验证 标签(空格分隔): php 第一种方式 **1 直接在controller里完成表单验证** **2 打印验证返回的错误信息 dd($errors)** 第二种方式 * ...
- SQL SERVER 将一个数据库中的表和数据复制到另一个数据库中
第一种情况:将A数据库.dbo.A表的数据追加到B数据库.dbo.B表中 (条件:此时B数据库中已创建好了B表) insert into B数据库.dbo.B表 select * from A数据库. ...
- P2742 [USACO5.1]圈奶牛Fencing the Cows
题目描述 农夫约翰想要建造一个围栏用来围住他的奶牛,可是他资金匮乏.他建造的围栏必须包括他的奶牛喜欢吃草的所有地点.对于给出的这些地点的坐标,计算最短的能够围住这些点的围栏的长度. 输入输出格式 输入 ...
- 中文版 R-FCN: Object Detection via Region-based Fully Convolutional Networks
R-FCN: Object Detection via Region-based Fully Convolutional Networks 摘要 我们提出了基于区域的全卷积网络,以实现准确和高效的目标 ...
- jquery定时器
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/ ...
- hiho160周 - 字符串压缩,经典dp
题目链接 小Hi希望压缩一个只包含大写字母'A'-'Z'的字符串.他使用的方法是:如果某个子串 S 连续出现了 X 次,就用'X(S)'来表示.例如AAAAAAAAAABABABCCD可以用10(A) ...
- NOIp2018模拟赛三十八
爆〇啦~ A题C题不会写,B题头铁写正解: 随手过拍很自信,出分一看挂成零. 若要问我为什么?gtmdsubtask! 神tm就一个subtask要么0分要么100,结果我预处理少了一点当场去世 难受 ...
- HDU-1215 七夕节 数论 唯一分解定理 求约数之和
题目链接:https://cn.vjudge.net/problem/HDU-1215 题意 中文题,自己去看吧,懒得写:) 思路 \[ Ans=\prod \sum p_i^j \] 唯一分解定理 ...