很久很久以前,有一只神犇叫Monster_Qi;

很久很久之后,有一只蒟蒻叫SWHsz;



1<=N<=1E9,A、B模1E9+7;

求这个。

求μ的话直接输出1就行了因为除了1的平方外都有平方因子。

求φ的话就有个显而易见的结论就是\(φ(n^2)=φ(n)n\),列出φ的一般式就行了。

然后就是套杜教筛的模板了。

要凑 \(f \cdot g=h\)

$ h(i)=\sum _{d|i} φ(d)dg(i/d) \(
显而易见的,g是\)id\(函数,\)h(i)=i^2$

然后随便搞了。

#include <iostream>
#include <cstdio>
#include <map>
using namespace std;
map<long long,long long>mp;
long long n;
const int N = 10000005,NI2=500000004,NI6=166666668,mod=1e9+7;
long long ph[N],prime[N],cnt;
bool vis[N];
void phhh() {
ph[1]=1;
for(int i=2; i<=N-5; i++) {
if(!vis[i]) prime[++cnt]=i,ph[i]=i-1;
for(int j=1; j<=cnt; j++) {
if(i*prime[j]<=N-5) vis[i*prime[j]]=1;else break;
if(i%prime[j]==0){ph[i*prime[j]]=ph[i]*prime[j];break;}
else ph[i*prime[j]]=ph[i]*ph[prime[j]];
}
}
for(int i=1;i<=N-5;i++) ph[i]=(ph[i]*i+ph[i-1])%mod;
}
long long solve(long long x) {
if(N-5>=x) return ph[x];
if(mp.count(x)) return mp[x];
long long ans=x*((x+1)%mod)%mod*((2*x%mod+1)%mod)%mod*NI6%mod;
for(long long i=2,nxti;i<=x;i=nxti+1) {
nxti=x/(x/i);
ans=(ans-(nxti+i)%mod*(nxti-i+1ll)%mod*NI2%mod*solve(x/i))%mod;
}
return mp[x]=(ans+mod)%mod;
}
int main() {
phhh();
scanf("%lld",&n);
printf("1\n%lld",solve(n));
}

[BZOJ4916]神犇(Monster_Qi)和蒟蒻(SWHsz)的更多相关文章

  1. BZOJ4916: 神犇和蒟蒻【杜教筛】

    Description 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; Input 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; Output 请你 ...

  2. BZOJ4916 神犇和蒟蒻 【欧拉函数 + 杜教筛】

    题目 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; 输入格式 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; 输出格式 请你输出一个整数A=\sum ...

  3. LG4213 【模板】杜教筛(Sum)和 BZOJ4916 神犇和蒟蒻

    P4213 [模板]杜教筛(Sum) 题目描述 给定一个正整数$N(N\le2^{31}-1)$ 求 $$ans_1=\sum_{i=1}^n\varphi(i)$$ $$ans_2=\sum_{i= ...

  4. BZOJ4916 神犇和蒟蒻(欧拉函数+杜教筛)

    第一问是来搞笑的.由欧拉函数的计算公式容易发现φ(i2)=iφ(i).那么可以发现φ(n2)*id(n)(此处为卷积)=Σd*φ(d)*(n/d)=nΣφ(d)=n2 .这样就有了杜教筛所要求的容易算 ...

  5. Bzoj4916: 神犇和蒟蒻

    题面 传送门 Sol 第一问puts("1") 第二问,\(\varphi(i^2)=i\varphi(i)\) 设\(\phi(n)=\sum_{i=1}^{n}i\varphi ...

  6. BZOJ4916: 神犇和蒟蒻(杜教筛)

    题意 求 $$\sum_{i = 1}^n \mu(i^2)$$ $$\sum_{i = 1}^n \phi(i^2)$$ $n \leqslant 10^9$ Sol zz的我看第一问看了10min ...

  7. [BZOJ4916]神犇和蒟蒻 杜教筛/Min_25筛

    题目大意: 给定\(n\le 10^9\),求: 1.\(\sum_{i=1}^n\mu(i^2)\) 2.\(\sum_{i=1}^n\varphi(i^2)\) 解释 1.\(\sum_{i=1} ...

  8. 【BZOJ4916】神犇和蒟蒻(杜教筛)

    [BZOJ4916]神犇和蒟蒻(杜教筛) 题面 BZOJ 求 \[\sum_{i=1}^n\mu(i^2)\ \ 和\ \sum_{i=1}^n\phi(i^2)\] 其中\[n<=10^9\] ...

  9. 【BZOJ4916】神犇和蒟蒻 解题报告

    [BZOJ4916]神犇和蒟蒻 Description 很久很久以前,有一群神犇叫sk和ypl和ssr和hjh和hgr和gjs和yay和xj和zwl和dcx和lyy和dtz和hy和xfz和myh和yw ...

随机推荐

  1. linux 线程切换效率与进程切换效率相差究竟有多大?

    Author:DriverMonkey Mail:bookworepeng@Hotmail.com Phone:13410905075 QQ:196568501 Are Linux threads t ...

  2. 支持中文的基于词为基本粒度的前缀树(prefix trie)python实现

    Trie树,也叫字典树.前缀树.可用于"predictive text"和"autocompletion".亦可用于统计词频(边插入Trie树边更新或加入词频) ...

  3. 判断是否是pc,获取屏幕宽度

    $(function(){ var w=document.documentElement?document.documentElement.clientWidth:document.body.clie ...

  4. 虚拟机window7与主机之间文件复制设置

    一.需要安装VMware Tools 选中虚拟机>虚拟机>安装VMware Tools 一直点击下一步直至完成 二.设置文件共享 选定实体机需要共享给虚拟机的文件夹,并为该共享起一个名称. ...

  5. Java Mocking入门—使用Mockito

    Java Mocking入门—使用Mockito 2014/03/10 | 分类: 基础技术 | 0 条评论 | 标签: 单元测试 分享到:8 本文由 ImportNew - liken 翻译自 dz ...

  6. HDU 5218 The E-pang Palace (简单几何—2014广州现场赛)

    题目链接:pid=5128">http://acm.hdu.edu.cn/showproblem.php? pid=5128 题面: The E-pang Palace Time Li ...

  7. python spark 决策树 入门demo

    Refer to the DecisionTree Python docs and DecisionTreeModel Python docs for more details on the API. ...

  8. new一个接口

    首先我们先看看接口的定义: 接口(英文:Interface),在JAVA编程语言中是一个抽象类型,是抽象方法的集合,接口通常以interface来声明.一个类通过继承接口的方式,从而来继承接口的抽象方 ...

  9. getElementById和querySelector区别

    1.常见的获取元素的方法有3种,分别是通过元素ID document.getElementById('idName');.通过标签名字document.getElementsByTagName(tag ...

  10. Redis(二)、Redis持久化RDB和AOF

    一.Redis两种持久化方式 对Redis而言,其数据是保存在内存中的,一旦机器宕机,内存中的数据会丢失,因此需要将数据异步持久化到硬盘中保存.这样,即使机器宕机,数据能从硬盘中恢复. 常见的数据持久 ...