1010: [HNOI2008]玩具装箱toy

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 9812  Solved: 3978
[Submit][Status][Discuss]

Description

  P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压
缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过
压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容
器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一
个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,
如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容
器,甚至超过L。但他希望费用最小.

Input

  第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7

Output

  输出最小费用

Sample Input

5 4
3
4
2
1
4

Sample Output

1

待整理
c处理前缀和
f[i]=min{1<=j<i}f(j)+(si-sj+i-j-1-L)^2
i的在一起,j的在一起,展开二次,就得到斜率优化的形式
2*(s[i]+i)<=...........
min是下凸壳
本题x坐标和斜率都单增,用单调队列就行了
 
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=5e4+;
typedef long long ll;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
}
int n,L;
ll s[N],f[N];
ll F(int i){return f[i]+(s[i]++L)*(s[i]++L);}
double slope(int a,int b){return (F(b)-F(a))/(s[b]-s[a]);}
int head,tail,q[N];
void dp(){
head=tail=;
q[head]=;
for(int i=;i<=n;i++){
while(head<tail&&slope(q[head],q[head+])<=*s[i]) head++;
int j=q[head];
f[i]=f[j]+(s[i]-s[j]--L)*(s[i]-s[j]--L);
while(head<tail&&slope(q[tail],i)<=slope(q[tail-],q[tail])) tail--;
q[++tail]=i;
}
}
int main(){
n=read();L=read();
for(int i=;i<=n;i++) s[i]=s[i-]+read();
for(int i=;i<=n;i++) s[i]+=i;
dp();
printf("%lld",f[n]);
}

BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]的更多相关文章

  1. BZOJ.1010.[HNOI2008]玩具装箱toy(DP 斜率优化/单调队列 决策单调性)

    题目链接 斜率优化 不说了 网上很多 这的比较详细->Click Here or Here //1700kb 60ms #include<cstdio> #include<cc ...

  2. BZOJ 1010: [HNOI2008]玩具装箱toy(斜率优化dp)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题意: 思路: 容易得到朴素的递归方程:$dp(i)=min(dp(i),dp(k)+(i-k ...

  3. BZOJ 1010 [HNOI2008]玩具装箱toy:斜率优化dp

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题意: 有n条线段,长度分别为C[i]. 你需要将所有的线段分成若干组,每组中线段的 ...

  4. 1010: [HNOI2008]玩具装箱toy [dp][斜率优化]

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  5. 1010: [HNOI2008]玩具装箱toy(斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 12280  Solved: 5277[Submit][S ...

  6. [HNOI2008]玩具装箱TOY --- DP + 斜率优化 / 决策单调性

    [HNOI2008]玩具装箱TOY 题目描述: P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京. 他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器 ...

  7. BZOJ1010: [HNOI2008]玩具装箱toy(dp+斜率优化)

    Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 12451  Solved: 5407[Submit][Status][Discuss] Descript ...

  8. BZOJ 1010: [HNOI2008]玩具装箱toy | 单调队列优化DP

    原题: http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题解: #include<cstdio> #include<algo ...

  9. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

随机推荐

  1. 开源:ASP.NET Aries 开发框架

    前言: 随着岁月的推进,不知不觉已在.NET这领域上战斗了十年了. 青春还没来得急好好感受,却已是步入健忘之秋的老人一枚了. 趁着还有点记忆,得赶紧把硬盘里那私藏的80G除外的东西,和大伙分享分享. ...

  2. 黑云压城城欲摧 - 2016年iOS公开可利用漏洞总结

    黑云压城城欲摧 - 2016年iOS公开可利用漏洞总结 作者:蒸米,耀刺,黑雪 @ Team OverSky 0x00 序 iOS的安全性远比大家的想象中脆弱,除了没有公开的漏洞以外,还有很多已经公开 ...

  3. 怎么让网站在本地支持SSL?

    打开vs,点击项目,查看属性,打开ssl 如果有什么危险提示,就允许 右击项目,选择属性 运行项目

  4. Unity 序列化 总结

    查找了 Script Serialization http://docs.unity3d.com/Manual/script-Serialization.html 自定义序列化及例子: http:// ...

  5. [.NET] 利用 async & await 的异步编程

    利用 async & await 的异步编程 [博主]反骨仔 [出处]http://www.cnblogs.com/liqingwen/p/5922573.html  目录 异步编程的简介 异 ...

  6. 【NLP】揭秘马尔可夫模型神秘面纱系列文章(一)

    初识马尔可夫和马尔可夫链 作者:白宁超 2016年7月10日20:34:20 摘要:最早接触马尔可夫模型的定义源于吴军先生<数学之美>一书,起初觉得深奥难懂且无什么用场.直到学习自然语言处 ...

  7. UVA-146 ID Codes

    It is 2084 and the year of Big Brother has finally arrived, albeit a century late. In order to exerc ...

  8. MFC单文档程序添加HTML帮助支持

    1.在App类 构造函数中添加 EnableHtmlHelp(); 2.在Frame类中,添加消息影射: ON_COMMAND(ID_HELP_FINDER, CFrameWnd::OnHelpFin ...

  9. docker4dotnet #4 使用Azure云存储构建高速 Docker registry

    使用Docker来构建应用程序最常见的操作就是 docker run 或者 docker pull了,但是由于众所周知的原因,在国内想要高速稳定的获取docker hub上面的资源并不是件容易的事情, ...

  10. Jexus服务器SSL二级证书安装指南

    申请获得服务器证书有三张,一张服务器证书,二张中级CA证书.在Android微信中访问Https,如果服务器只有一张CA证书,就无法访问. 获取服务器证书中级CA证书: 为保障服务器证书在客户端的兼容 ...