[BZOJ2791][Poi2012]Rendezvous
2791: [Poi2012]Rendezvous
Time Limit: 25 Sec Memory Limit: 128 MB
Submit: 95 Solved: 71
[Submit][Status][Discuss]
Description
给定一个n个顶点的有向图,每个顶点有且仅有一条出边。
对于顶点i,记它的出边为(i, a[i])。
再给出q组询问,每组询问由两个顶点a、b组成,要求输出满足下面条件的x、y:
1. 从顶点a沿着出边走x步和从顶点b沿着出边走y步后到达的顶点相同。
2. 在满足条件1的情况下max(x,y)最小。
3. 在满足条件1和2的情况下min(x,y)最小。
4. 在满足条件1、2和3的情况下x>=y。
如果不存在满足条件1的x、y,输出-1 -1。
Input
第一行两个正整数n和q (n,q<=500,000)。
第二行n个正整数a[1],a[2],...,a[n] (a[i]<=n)。
下面q行,每行两个正整数a,b (a,b<=n),表示一组询问。
Output
输出q行,每行两个整数。
Sample Input
4 3 5 5 1 1 12 12 9 9 7 1
7 2
8 11
1 2
9 10
10 5
Sample Output
1 2
2 2
0 1
-1 -1
HINT
Source
n个点,n条边且每个点都有出边,显然是环套树森林。
先dfs把环套树拆成一堆树,倍增LCA。
先将x,y两个点倍增到环上,然后判断即可。
#include<cstdio>
#include<algorithm>
#define N 500050
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,fa[N][],root,q,circle[N],deep[N];
int num[N],sum[N],tot,pos[N],vis[N];
void findcircle(int x)
{
int now=x;
for(;;x=fa[x][])
{
if(vis[x]==now)break;
if(vis[x])return;
vis[x]=now;
}
tot++;
while(!circle[x])
{
circle[x]=x;
deep[x]=;
num[x]=++sum[tot];
pos[x]=tot;
x=fa[x][];
}
}
void dfs(int x)
{
if(deep[x])return;
dfs(fa[x][]);
circle[x]=circle[fa[x][]];
deep[x]=deep[fa[x][]]+;
for(int i=;(<<i)<deep[x];i++)
fa[x][i]=fa[fa[x][i-]][i-];
}
inline int lca(int x,int y)
{
if(deep[x]<deep[y])swap(x,y);
int t=deep[x]-deep[y];
for(int i=;~i;i--)
if(t&(<<i))x=fa[x][i];
if(x==y)return x;
for(int i=;~i;i--)
if(fa[x][i]!=fa[y][i])
x=fa[x][i],y=fa[y][i];
return fa[x][];
}
bool judge(int a,int b,int c,int d)
{
if(max(a,b)<max(c,d))return ;
if(max(a,b)>max(c,d))return ;
if(min(a,b)<min(c,d))return ;
if(min(a,b)>min(c,d))return ;
if(a>=b)return ;
return ;
}
int main()
{
n=read();q=read();
for(int i=;i<=n;i++)
fa[i][]=read();
for(int i=;i<=n;i++)
findcircle(i);
for(int i=;i<=n;i++)
if(!circle[i])dfs(i);
while(q--)
{
int x=read(),y=read();
if(pos[circle[x]]!=pos[circle[y]])
{
puts("-1 -1");
continue;
}
if(circle[x]==circle[y])
{
int t=lca(x,y);
printf("%d %d\n",deep[x]-deep[t],deep[y]-deep[t]);
continue;
}
int ans1=deep[x]-,ans2=deep[y]-,t=pos[circle[x]];
x=num[circle[x]];y=num[circle[y]];
int z1=(sum[t]+y-x)%sum[t],z2=sum[t]-z1;
if(judge(ans1+z1,ans2,ans1,ans2+z2))
printf("%d %d\n",ans1+z1,ans2);
else printf("%d %d\n",ans1,ans2+z2);
}
}
[BZOJ2791][Poi2012]Rendezvous的更多相关文章
- [BZOJ2791]:[Poi2012]Rendezvous(塔尖+倍增LCA)
题目传送门 题目描述 给定一个有n个顶点的有向图,每个顶点有且仅有一条出边.每次询问给出两个顶点${a}_{i}$和${b}_{i}$,求满足以下条件的${x}_{i}$和${y}_{i}$: ...
- 【BZOJ2791】[Poi2012]Rendezvous 倍增
[BZOJ2791][Poi2012]Rendezvous Description 给定一个n个顶点的有向图,每个顶点有且仅有一条出边.对于顶点i,记它的出边为(i, a[i]).再给出q组询问,每组 ...
- 【BZOJ 2791】 2791: [Poi2012]Rendezvous (环套树、树链剖分LCA)
2791: [Poi2012]Rendezvous Description 给定一个n个顶点的有向图,每个顶点有且仅有一条出边.对于顶点i,记它的出边为(i, a[i]).再给出q组询问,每组询问由两 ...
- bzoj 2791 [Poi2012]Rendezvous 基环森林
题目大意 给定一个n个顶点的有向图,每个顶点有且仅有一条出边. 对于顶点i,记它的出边为(i, a[i]). 再给出q组询问,每组询问由两个顶点a.b组成,要求输出满足下面条件的x.y: 从顶点a沿着 ...
- [Poi2012]Rendezvous
题目描述 给定一个n个顶点的有向图,每个顶点有且仅有一条出边. 对于顶点i,记它的出边为(i, a[i]). 再给出q组询问,每组询问由两个顶点a.b组成,要求输出满足下面条件的x.y: 从顶点a沿着 ...
- POI2012题解
POI2012题解 这次的完整的\(17\)道题哟. [BZOJ2788][Poi2012]Festival 很显然可以差分约束建图.这里问的是变量最多有多少种不同的取值. 我们知道,在同一个强连通分 ...
- LG3533 [POI2012]RAN-Rendezvous
2791: [Poi2012]Rendezvous Time Limit: 25 Sec Memory Limit: 128 MBSubmit: 259 Solved: 160[Submit][S ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- 「POI2012」约会 Rendezvous
#2691. 「POI2012」约会 Rendezvous 这题我简直不想说什么了,什么素质,卡常数…… “每个顶点有且仅有一条出边”,所以是一道基环树的题,首先tarjan缩点,在缩完点后的图上求a ...
随机推荐
- CentOS下用yum配置php+mysql+apache(LAMP)
#安装需要的包,有依赖关系,自动帮你解决 yum install httpd mysql mysql-server php php-gd php-mbstring php-mysql #启动httpd ...
- js判断当前的访问是手机/电脑
<script type="text/javascript"> var commonURL = 'http://www.xxx.com/'; function mobi ...
- linux设备驱动概述,王明学learn
linux设备驱动学习-1 本章节主要学习有操作系统的设备驱动和无操作系统设备驱动的区别,以及对操作系统和设备驱动关系的认识. 一.设备驱动的作用 对设备驱动最通俗的解释就是“驱使硬件设备行动” .设 ...
- Android在listview添加checkbox实现单选多选操作问题(转)
转自:http://yangshen998.iteye.com/blog/1310183 在Android某些开发需求当中,有时候需要在listveiw中加入checkbox实现单选,多选操作.表面上 ...
- Socket 通讯
#import "ViewController.h" #import <sys/socket.h> #import <netinet/in.h> #impo ...
- 使用while代替for循环的几个习题
1:兔子问题 2:100以内质数的和 3:单位给发了一张150元购物卡,拿着到超市买三类洗化用品.洗发水15元,香皂2元,牙刷5元.求刚好花完150元,有多少种买法,没种买法都是各买几样? 总结:wh ...
- 【转】Hive配置文件中配置项的含义详解(收藏版)
http://www.aboutyun.com/thread-7548-1-1.html 这里面列出了hive几乎所有的配置项,下面问题只是说出了几种配置项目的作用.更多内容,可以查看内容问题导读:1 ...
- Loadrunner中参数化实战(8)-Unique+Each occurrence
参数化数据30条: 脚本如下,演示登录,投资,退出操作是,打印手机号: 首先验证Vugen中迭代: Unique+Each occurrence 设置迭代4次Action 结果如下:
- JAVA Day3
分支与循环 char sex = in.next().charAt(0); java中 ...
- 使用Spring的JAVA Mail支持简化邮件发送
http://www.cnblogs.com/codeplus/archive/2011/11/03/2232893.html