[问题2014A11]  解答

我们需要利用以下关于幂等阵判定的结论,它是复旦高代书第 142 页的例 3.6.4:

结论  设 \(A\) 为 \(n\) 阶方阵, 则 \(A^2=A\) 当且仅当 \(\mathrm{r}(A)+\mathrm{r}(I_n-A)=n\).

由题中两个条件和上述结论可得

\[n=\mathrm{r}(A+B)+\mathrm{r}(I_n-(A+B))=\mathrm{r}(A)+\mathrm{r}(B)+\mathrm{r}(I_n-A-B).\cdots(1)\]

证法一 (利用分块初等变换)

构造如下分块对角阵, 并对其实施分块初等变换, 可得

\[\begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & I_n-A-B \end{pmatrix}\to\begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ A & B & I_n-A-B \end{pmatrix}\to\begin{pmatrix} A & 0 & A \\ 0 & B & B \\ A & B & I_n \end{pmatrix}\]

\[\to\begin{pmatrix} A-A^2 & -AB & 0 \\ -BA & B-B^2 & 0 \\ A & B & I_n \end{pmatrix}\to\begin{pmatrix} A-A^2 & -AB & 0 \\ -BA & B-B^2 & 0 \\ 0 & 0 & I_n \end{pmatrix}.\]

注意到分块初等变换不改变矩阵的秩, 故由 (1) 式可得 \(\mathrm{r}\begin{pmatrix} A-A^2 & -AB \\ -BA & B-B^2 \end{pmatrix}=0\), 从而我们有 \(A^2=A\), \(B^2=B\), \(AB=BA=0\).

证法二 (由张钧瑞同学提供, 利用秩的不等式)

主要思路是反复利用秩的不等式 \(\mathrm{r}(A)+\mathrm{r}(B)\geq \mathrm{r}(A+B)\) (复旦高代书第 144 页习题 5(3)) 以及幂等阵判定的结论. 由 (1) 式可得

\[n\geq \mathrm{r}(A)+\mathrm{r}(I_n-A)\geq \mathrm{r}(I_n)=n,\]

所以上述不等式只能取等号, 从而 \(A\) 是幂等阵. 同理可证 \(B\) 也是幂等阵. 最后, 由 \((A+B)^2=A+B\), \(A^2=A\), \(B^2=B\) 可得 \(AB=BA=0\), 这是[问题2014A04] 的第一小题.  \(\Box\)

 本题的几何版本见复旦高代书第 208 页复习题 34, 所以本题也有第三种几何的证法, 具体证明请参考复旦高代白皮书 (第二版) 第 131 页例 4.45.

[问题2014A11] 解答的更多相关文章

  1. 精选30道Java笔试题解答

    转自:http://www.cnblogs.com/lanxuezaipiao/p/3371224.html 都 是一些非常非常基础的题,是我最近参加各大IT公司笔试后靠记忆记下来的,经过整理献给与我 ...

  2. 精通Web Analytics 2.0 (8) 第六章:使用定性数据解答”为什么“的谜团

    精通Web Analytics 2.0 : 用户中心科学与在线统计艺术 第六章:使用定性数据解答"为什么"的谜团 当我走进一家超市,我不希望员工会认出我或重新为我布置商店. 然而, ...

  3. 【字符编码】Java字符编码详细解答及问题探讨

    一.前言 继上一篇写完字节编码内容后,现在分析在Java中各字符编码的问题,并且由这个问题,也引出了一个更有意思的问题,笔者也还没有找到这个问题的答案.也希望各位园友指点指点. 二.Java字符编码 ...

  4. spring-stutrs求解答

    这里贴上applicationContext里的代码: <?xml version="1.0" encoding="UTF-8"?> <bea ...

  5. JavaScript Bind()趣味解答 包懂~~

    首先声明一下,这个解答是从Segmentfault看到的,挺有意思就记录下来.我放到最下面: bind() https://developer.mozilla.org/zh-CN/docs/Web/J ...

  6. CMMI4级实践中的5个经典问题及解答

    这五个问题相当经典而且比较深,需要做过CMMI4.5级的朋友才能看懂这些问题.这5个问题是一位正在实践CMMI4级的朋友提出来的,而解答则是我的个人见解. 五个疑问是:   A.流程,子流程部分不明白 ...

  7. 海边直播目标2017全国初中数学竞赛班课堂测试题解答-The Final

    1. 设函数 $f(x) = 2^x(ax^2 + bx + c)$ 满足等式 $f(x+1) - f(x) = 2^x\cdot x^2$, 求 $f(1)$. 解答: 由 $f(x) = 2^x( ...

  8. 知乎大牛的关于JS解答

    很多疑惑一扫而空.... http://www.zhihu.com/question/35905242?sort=created JS的单线程,浏览器的多进程,与CPU,OS的对位. 互联网移动的起起 ...

  9. [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供)

    [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供) (1)  当 \(a=0\) 时,这是高代书复习题一第 33 题,可用升阶法和 Vander Monde 行列式来求解,其结果为 \[ ...

随机推荐

  1. cocos2d-x渲染流程

    Cocos2Dx之渲染流程 发表于8个月前(2014-08-08 22:46)   阅读(3762) | 评论(2) 17人收藏此文章, 我要收藏 赞2 如何快速提高你的薪资?-实力拍“跳槽吧兄弟”梦 ...

  2. PNG格式的图像文件,创建的图像的MIME类型的头部

    在安装完这三个组件后,还需要重新配置一次PHP,这也是你对采用DSO方式安装PHP感到庆幸的地方之一.运行make clean,然后在当前的配置中添加下面的内容: --with-gd=[/path/t ...

  3. 20145337实验三实验报告——敏捷开发与XP实践

    20145337实验三实验报告--敏捷开发与XP实践 实验名称 敏捷开发与XP实践 实验内容 XP基础 XP核心实践 相关工具 ** 实验步骤**### 敏捷开发与XP 软件工程包括下列领域:软件需求 ...

  4. MyEclipse修改项目名称后,部署到tomcat问题

    问题描述: 修改项目名称后,部署到tomcat server,部署出来的文件夹名还是旧的名称. 解决方案: 光把项目重命名是不够的,还要修改一下Myeclipse里面的配置. 工程名->右键-& ...

  5. 使用beanUtils操纵javabean

    Sun公司的内省API过于繁琐,所以Apache组织结合很多实际开发中的应用场景开发了一套简单.易用的API操作Bean的属性——BeanUtils,在Beanutil中可以直接进行类型的自动转换. ...

  6. ArcGIS Server 创建站点失败

    前期解决方案中部分解决方法汇总:①安装Server时创建的ArcGIS Server Account (操作系统级别用户,默认用户名arcgis)对创建站点时新建的站点目录arcgisserver文件 ...

  7. switch多分支语句

    1.switch多分支语句的语法 switch(表达式){ case 常量值:要执行的语句; break; case 常量值:要执行的语句; break; case 常量值:要执行的语句; break ...

  8. C#中的延迟加载

    什么是延迟加载?   延迟加载顾名思义就是:推迟加载的时机,当真正使用的时候才加载. 通常在创建一个大对象时,有些属性我们可以在使用到的时候才去创建(设置属性的值),这个可以有效的提升系统性能. 示例 ...

  9. php判断闰年

    <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...

  10. vi/vim

    config file location 1. MinGW: C:\MinGW\msys\1.0\share\vim\vimrc 2. Linux: home config file content ...