A Board Game
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 551   Accepted: 373

Description

Dao was a simple two-player board game designed by Jeff Pickering and Ben van Buskirk at 1999. A variation of it, called S-Dao, is a one-player game. In S-Dao, the game board is a 4 * 4 square with 16 cells. There are 4 black stones and 4 white stones placed on the game board randomly in the beginning. The player is given a final position and asked to play the game using the following rules such that the final position is reached using the minimum number of moves:

      1. You first move a white stone, and then a black stone. You then alternatively move a white stone and a black stone.
      2. A stone can be moved horizontally, vertically or diagonally. A stone must be moved in a direction until the boarder or another stone is encountered. There is no capture or jump.
    3. During each move, you need to move a stone of the right color. You cannot pass.

An example of a sequence of legal moves is shown in the following figure. This move sequence takes 4 moves. This is not a sequence of legal moves 
 
using the least number of moves assume the leftmost board is the initial position and the rightmost board is the final position. A sequence of moves using only 3 moves is shown below. 
 
Given an initial position and a final position, your task is to report the minimum number of moves from the initial position to the final position.

Input

The first line contains the number of test cases w, w <= 6. Then the w test cases are listed one by one. Each test case consists of 8 lines, 4 characters per line. The first 4 lines are the initial board position. The remaining 4 lines are the final board position. The i-th line of a board is the board at the i-th row. A character 'b' means a black stone, a character 'w' means a white stone, and a '*' means an empty cell.

Output

For each test case, output the minimum number of moves in one line. If it is impossible to move from the initial position to the final position, then output -1.

Sample Input

2
w**b
*wb*
*bw*
b**w
w**b
*wb*
*bw*
bw**
w**b
*b**
**b*
bwww
w**b
*bb*
****
bwww

Sample Output

1
3

题目链接:POJ 2697

题如其名,很无聊,难怪题目里的S-Dao是一个人玩的游戏,给你一个4*4的棋盘和4颗黑棋、4颗白旗,每一次可以向八个方向移动,但是只能撞到边界或者撞到棋子才能停止移动,求初始态到目标态最少的移动次数,这题由于每个格子的颜色不是唯一的,康托不好用,只能用STL或者字典树,然后看一共有多少种状态,显然是$\binom{16}{4} * \binom{12}{4} = 900900$,然而想想STL这么慢还是字典树吧,顺便再熟练一下数组版字典树的写法,虽然代码量有点大,但是细心点还是不会错的,写斜方向移动函数的时候突然感觉有点想起以前玩魔方的公式了,怀念1s。

代码:

#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <sstream>
#include <cstring>
#include <bitset>
#include <string>
#include <deque>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
typedef pair<int,int> pii;
typedef long long LL;
const double PI=acos(-1.0);
const int N=900900+7;
struct info
{
char st[4][4];
bool bw;
int step;
inline bool operator==(const info &t)const
{
for (int i=0; i<4; ++i)
for (int j=0; j<4; ++j)
if(st[i][j]!=t.st[i][j])
return false;
return true;
}
inline void Lmove(const int &x,const int &y)
{
int yy=y;
while (yy-1>=0&&st[x][yy-1]=='0')
--yy;
swap(st[x][y],st[x][yy]);
++step;
bw^=1;
}
inline void Rmove(const int &x,const int &y)
{
int yy=y;
while (yy+1<4&&st[x][yy+1]=='0')
++yy;
swap(st[x][y],st[x][yy]);
++step;
bw^=1;
}
inline void Umove(const int &x,const int &y)
{
int xx=x;
while (xx-1>=0&&st[xx-1][y]=='0')
--xx;
swap(st[x][y],st[xx][y]);
++step;
bw^=1;
}
inline void Dmove(const int &x,const int &y)
{
int xx=x;
while (xx+1<4&&st[xx+1][y]=='0')
++xx;
swap(st[x][y],st[xx][y]);
++step;
bw^=1;
}
inline void RU(const int &x,const int &y)
{
int xx=x;
int yy=y;
while (xx-1>=0&&yy+1<4&&st[xx-1][yy+1]=='0')
--xx,++yy;
swap(st[x][y],st[xx][yy]);
++step;
bw^=1;
}
inline void RD(const int &x,const int &y)
{
int xx=x;
int yy=y;
while (xx+1<4&&yy+1<4&&st[xx+1][yy+1])
++xx,++yy;
swap(st[x][y],st[xx][yy]);
++step;
bw^=1;
}
inline void LU(const int &x,const int &y)
{
int xx=x;
int yy=y;
while (xx-1>=0&&yy-1>=0&&st[xx-1][yy-1]=='0')
--xx,--yy;
swap(st[x][y],st[xx][yy]);
++step;
bw^=1;
}
inline void LD(const int &x,const int &y)
{
int xx=x;
int yy=y;
while (xx+1<4&&yy-1>=0&&st[xx+1][yy-1]=='0')
++xx,--yy;
swap(st[x][y],st[xx][yy]);
++step;
bw^=1;
}
};
struct Trie
{
int nxt[3];
inline void init()
{
nxt[0]=nxt[1]=nxt[2]=0;
}
};
Trie L[N*3];
int tot;
info S,T;
enum {B=true,W=false}; void init()
{
L[0].init();
tot=1;
}
bool update(const info &t)
{
int now=0;
bool any=false;
for (int i=0; i<16; ++i)
{
int v=t.st[i>>2][i%4]-'0';
if(!L[now].nxt[v])
{
L[tot].init();
L[now].nxt[v]=tot++;
any=true;
}
now=L[now].nxt[v];
}
return any;
}
int bfs(const info &s)
{
queue<info>Q;
Q.push(s);
update(s);
info now,v;
while (!Q.empty())
{
now=Q.front();
if(now==T)
return now.step;
Q.pop();
if(!now.bw)///白色
{
for (int i=0; i<16; ++i)
{
if(now.st[i>>2][i%4]=='1')
{
v=now;
v.Dmove(i>>2,i%4);
if(update(v))
Q.push(v);
v=now;
v.Umove(i>>2,i%4);
if(update(v))
Q.push(v);
v=now;
v.Lmove(i>>2,i%4);
if(update(v))
Q.push(v);
v=now;
v.Rmove(i>>2,i%4);
if(update(v))
Q.push(v);
v=now;
v.LU(i>>2,i%4);
if(update(v))
Q.push(v);
v=now;
v.RU(i>>2,i%4);
if(update(v))
Q.push(v);
v=now;
v.LD(i>>2,i%4);
if(update(v))
Q.push(v);
}
}
}
else///黑色
{
for (int i=0; i<16; ++i)
{
if(now.st[i>>2][i%4]=='2')
{
v=now;
v.Dmove(i>>2,i%4);
if(update(v))
Q.push(v);
v=now;
v.Umove(i>>2,i%4);
if(update(v))
Q.push(v);
v=now;
v.Lmove(i>>2,i%4);
if(update(v))
Q.push(v);
v=now;
v.Rmove(i>>2,i%4);
if(update(v))
Q.push(v);
v=now;
v.LU(i>>2,i%4);
if(update(v))
Q.push(v);
v=now;
v.RU(i>>2,i%4);
if(update(v))
Q.push(v);
v=now;
v.LD(i>>2,i%4);
if(update(v))
Q.push(v);
}
}
}
}
return -1;
}
int main(void)
{
int tcase,i,j;
scanf("%d",&tcase);
getchar();
while (tcase--)
{
init();
for (i=0; i<4; ++i)
{
for (j=0; j<4; ++j)
{
scanf("%c",&S.st[i][j]);
if(S.st[i][j]=='*')
S.st[i][j]='0';
else if(S.st[i][j]=='w')
S.st[i][j]='1';
else
S.st[i][j]='2';
}
getchar();
}
S.step=0;
S.bw=W;
for (i=0; i<4; ++i)
{
for (j=0; j<4; ++j)
{
scanf("%c",&T.st[i][j]);
if(T.st[i][j]=='*')
T.st[i][j]='0';
else if(T.st[i][j]=='w')
T.st[i][j]='1';
else
T.st[i][j]='2';
}
getchar();
}
printf("%d\n",bfs(S));
}
return 0;
}

POJ 2697 A Board Game(Trie判重+BFS)的更多相关文章

  1. 洛谷 P1379 八数码难题 Label:判重&&bfs

    特别声明:紫书上抄来的代码,详见P198 题目描述 在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字.棋盘中留有一个空格,空格用0来表示.空格周围的棋子可以移到空格中.要求解的问题是:给 ...

  2. poj 2697 A Board Game(bfs+hash)

    Description Dao was a simple two-player board game designed by Jeff Pickering and Ben van Buskirk at ...

  3. POJ 2697 A Board Game (bfs模拟)

    比较水的一道题,在4*4的棋盘上有黑白子,现在有某种移动方式,问能否通过它将棋盘从某个状态移动到另一种状态 只要想好怎么保存hash表来去重,其他就差不多了... #include <iostr ...

  4. poj 1564 Sum It Up | zoj 1711 | hdu 1548 (dfs + 剪枝 or 判重)

    Sum It Up Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) Total Sub ...

  5. POJ 1945 暴搜+打表 (Or 暴搜+判重)

    思路: 呃呃 暴搜+打表 暴搜的程序::稳稳的TLE+MLE (但是我们可以用来打表) 然后我们就可以打表过了 hiahiahia 可以证明最小的那个数不会超过200(怎么证明的我也不知道),然后就直 ...

  6. poj 1465 Multiple(bfs+余数判重)

    题意:给出m个数字,要求组合成能够被n整除的最小十进制数. 分析:用到了余数判重,在这里我详细的解释了.其它就没有什么了. #include<cstdio> #include<cma ...

  7. POJ 3668 Game of Lines (暴力,判重)

    题意:给定 n 个点,每个点都可以和另一个点相连,问你共有多少种不同斜率的直线. 析:那就直接暴力好了,反正数也不大,用set判重就好,注意斜率不存在的情况. 代码如下: #include <c ...

  8. poj 3131 双向搜索+hash判重

    题意: 初始状态固定(朝上的全是W,空格位置输入给出),输入初始状态的空格位置,和最终状态朝上的位置,输出要多少步才能移动到,超过30步输出-1. 简析: 每一个格子有6种状态,分别是 0WRB, 1 ...

  9. POJ 2458 DFS+判重

    题意: 思路: 搜+判重 嗯搞定 (听说有好多人用7个for写得-.) //By SiriusRen #include <bitset> #include <cstdio>0 ...

随机推荐

  1. Smart原则

    遵循smart原则,必须是具体的.可衡量的.可达到的.与岗位职责相关的.有明确达成期限的.

  2. css -- 布局元素

    默认情况下拥有布局的元素:HTML ,table,tr,td,img,hr,input,select,textarea,button,iframe,embed,object,applet,marque ...

  3. node read file fs

    var fs = require("fs") fs.readFile("file.txt","UTF-8",function(err,dat ...

  4. Find Minimum in Rotated Sorted Array

    package leetcode; /* * * 注意问题: * 1. 原序列升序.降序问题,两种情况都要考虑 * 2. 边界问题,如果只有两个元素时要单独考虑,在num[mid]==num[left ...

  5. 2014-2015 ACM-ICPC, NEERC, Moscow Subregional Contest D. Do it Right!

    D. Do it Right! time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...

  6. BZOJ2149 : 拆迁队

    设$c[i]=g[i]+\frac{i(i+1)}{2}-a[i]\times i-a[i]$,$d[i]=a[i]-i$ $f[i]$表示以$i$为结尾最多保留多少个建筑,则 $f[i]=\max( ...

  7. IOS之同步请求、异步请求、GET请求、POST请求

    .同步请求可以从因特网请求数据,一旦发送同步请求,程序将停止用户交互,直至服务器返回数据完成,才可以进行下一步操作, .异步请求不会阻塞主线程,而会建立一个新的线程来操作,用户发出异步请求后,依然可以 ...

  8. SPFA 的两个优化

    From NOCOW SPFA算法有两个优化算法 SLF 和 LLL: SLF:Small Label First 策略,设要加入的节点是j,队首元素为i,若dist(j)<dist(i),则将 ...

  9. web安全测试

  10. Excel中COUNTIFS函数统计词频个数出现次数

    Excel中COUNTIFS函数统计词频个数出现次数   在Excel中经常需要实现如下需求:在某一列单元格中有不同的词语,有些词语相同,有的不同(如图1所示).需要统计Excel表格中每个词语出现的 ...