1.背景介绍

Hanio (汉诺塔,又称河内塔)问题是源于印度一个古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。

我们姑且不去追溯传说的缘由,现考虑一下把64片金片,由一根针上移到另一根针上,并且始终保持上小下大的顺序。这需要多少次移动呢?这里需要递归的方法。假设有n片,移动次数是f(n).显然f(1)=1,f(2)=3,f(3)=7,且f(k+1)=2*f(k)+1。此后不难证明f(n)=2^n-1。n=64时,

假如每秒钟一次,共需多长时间呢?一个平年365天有31536000 秒,闰年366天有31622400秒,平均每年31556952秒,我们用多功能计算器计算一下:

18446744073709551615秒

这表明移完这些金片需要5845.54亿年以上,而地球存在至今不过45亿年,太阳系的预期寿命据说也就是数百亿年。真的过了5845.54亿年,不说太阳系和银河系,至少地球上的一切生命,连同梵塔、庙宇等,都早已经灰飞烟灭。


2.代码实现

  递归实现相当简单,不过多解释就直接附上C++代码

 #include <cstdio>
#include <cstring> void hanio(int n,char a,char b,char c){
//临界条件:只剩一个盘
if(n==) printf("%d号圆盘 :%c --> %c\n",n,a,c);
else {
hanio(n-,a,c,b);
printf("%d号圆盘 :%c --> %c\n",n,a,c);
hanio(n-,b,a,c);
}
}
int main(){
int n;
printf("本汉诺塔游戏为从A柱子移到C柱子。\n请输入开始一共圆盘个数n:");
while(scanf("%d",&n)==){
hanio(n,'A','B','C');
printf("输出结束!\n继续输入n:");
}
return ;
}

3.测试结果:

结语:

  递归在算法中很常见,是一种非常重要的思想。这次就以介绍汉诺塔的实现作为引子,后续还会继续更新更多递归算法。敬请关注!

Hanio汉诺塔代码递归实现的更多相关文章

  1. 从"汉诺塔"经典递归到JS递归函数

    前言 参考<JavaScript语言精粹> 递归是一种强大的编程技术,他把一个问题分解为一组相似的子问题,每一问题都用一个寻常解去解决.递归函数就是会直接或者间接调用自身的一种函数,一般来 ...

  2. 用C语言实现汉诺塔自动递归演示程序

    用C语言实现汉诺塔自动递归演示程序 程序实现效果 1.变界面大小依照输入递归数改变. 2.汉诺塔自动移动演示. 3.采用gotoxy实现流畅刷新. 4.保留文字显示递归流程 程序展示及实现 githu ...

  3. 【Python实践-3】汉诺塔问题递归求解(打印移动步骤及计算移动步数)

    # -*- coding: utf-8 -*- #汉诺塔移动问题 # 定义move(n,a,b,c)函数,接受参数n,表示3个柱子A.B.C中第1个柱子A的盘子数量 # 然后打印出把所有盘子从A借助B ...

  4. 汉诺塔问题-递归实现-JAVA

    public class hanio { /** * @param args */ public static void main(String[] args) { // TODO Auto-gene ...

  5. 3145 code[VS]汉诺塔游戏--递归

    3145 汉诺塔游戏 题目描述 Description 汉诺塔问题(又称为河内塔问题),是一个大家熟知的问题.在A,B,C三根柱子上,有n个不同大小的圆盘(假设半径分别为1-n吧),一开始他们都叠在我 ...

  6. hanoi(汉诺塔)递归实现

    汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按大小顺序 ...

  7. CODEVS 3145 汉诺塔游戏 递归

    题目描述 Description 汉诺塔问题(又称为河内塔问题),是一个大家熟知的问题.在A,B,C三根柱子上,有n个不同大小的圆盘(假设半径分别为1-n吧),一开始他们都叠在我A上(如图所示),你的 ...

  8. HDU 2064 汉诺塔III(递归)

    题目链接 Problem Description 约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下.由小到大顺序串着由64个圆盘构成的塔.目的是将最左边杆上的盘 ...

  9. Python 实现汉诺塔问题(递归)

    有三根柱子一次为A,B,C 现在A柱子上有3个块,按照汉诺塔规则移动到C柱子上去,打印步骤? 我们这样理解:A为原始柱,C为目标柱,B为缓冲柱 1.定义一个函数move(n,a,b,c),n为原始柱上 ...

随机推荐

  1. sublime安装package control组件

    第一步,首先到这个网站https://packagecontrol.io/installation去下载Package Control.sublime-package文件 第二步,将下载的文件放到C: ...

  2. centos7 安装拼音输入法(转载)

    http://m.blog.csdn.net/article/details?id=52137523

  3. [转]C#如何把文件夹压缩打包然后下载

    public partial class _Default2 : System.Web.UI.Page{ protected void Page_Load(object sender, EventAr ...

  4. 浅谈设计模式--装饰者模式(Decorator Pattern)

    挖了设计模式这个坑,得继续填上.继续设计模式之路.这次讨论的模式,是 装饰者模式(Decorator Pattern) 装饰者模式,有时也叫包装者(Wrapper),主要用于静态或动态地为一个特定的对 ...

  5. c++ 头文件

    可以将程序分为二部分: 头文件:包含结构声明和使用这些结构的函数的原型 源代码文件: 包含与结构有关的函数的代码 不要将函数的定义或变量的声明放在头文件里, 一般头文件可以包含以下内容 >函数原 ...

  6. Theano3.3-练习之逻辑回归

    是官网上theano的逻辑回归的练习(http://deeplearning.net/tutorial/logreg.html#logreg)的讲解. Classifying MNIST digits ...

  7. [MCSM]随机搜索和EM算法

    1. 概述 本节将介绍两类问题的不同解决方案.其一是通过随机的搜索算法对某一函数的取值进行比较,求取最大/最小值的过程:其二则和积分类似,是使得某一函数被最优化,这一部分内容的代表算法是EM算法.(书 ...

  8. Javascript将构造函数扩展为简单工厂

    一般而言,在Javascript中创建对象时需要使用关键字new(按构造函数去调用),但是某些时候,开发者希望无论new关键字有没有被显式使用,构造函数都可以被正常调用,即构造函数同时还具备简单工厂的 ...

  9. Bootstrap系列 -- 8. 代码显示

    一. Bootstrap中的代码块 代码块一般在博客中使用的较多,比较博客园中提供的贴代码. 在Bootstrap中提供了三种形式的代码显示 1. 使用<code></code> ...

  10. SQL 2014 in-memory中的storage部分

    基于CTP1的官方白皮书,自己理解的内容.白皮书下载地址:http://download.microsoft.com/download/F/5/0/F5096A71-3C31-4E9F-864E-A6 ...