Deep Metric Learning via Lifted Structured Feature Embedding

CVPR 2016

  摘要:本文提出一种距离度量的方法,充分的发挥 training batches 的优势,by lifting the vector of pairwise distances within the batch to the matrix of pairwise distances. 刚开始看这个摘要,有点懵逼,不怕,后面会知道这段英文是啥意思的。

  

  引言部分开头讲了距离相似性度量的重要性,并且应用广泛。这里提到了三元组损失函数 (triplet loss),就是讲在训练的过程当中,尽可能的拉近两个相同物体之间的距离,而拉远不同物体之间的距离;这种做法会比普通的训练方法得到更好的效果。但是,文章中提到,现有的三元组方法却无法充分利用 minibatch SGD training 的 training batches 的优势。现有的方法首先随机的采样图像对或者三元组,构建训练 batches, 计算每一个 pairs or triplets 的损失。本文提出一种方法,称为:lifts,将 the vector of pairwise distances 转换成 the matrix of pairwise distance. 然后在 lifts problem 上设计了一个新的结构损失目标。结果表明,在 GoogleLeNet network 上取得了比其他方法都要好的结果。

  然后作者简单的回顾了一下关于判别性训练网络(discriminatively training networks)来学习 semantic embedding。大致结构预览图如下所示:

  首先是: Contrastive embedding. 

  这种方法在 paired data ${(x_i, x_j, y_{ij})}$上进行训练。这种 contrastive training 最小化具有相同 label 类别的样本之间的距离,然后对不同label的样本,但是其距离小于 $\alpha$ 的 negative pair 给予惩罚。代价函数的定义为:

  其中,m 代表batch中图像的个数,f(*)是网路输出的特征,即原文中表达的:the feature embedding output from the network. $D_{i, j}$ 是两个样本特征之间欧式距离的度量。标签 $y_{i, j} \in {0, 1}$表明是否样本对来自同一个类别。$[*]_+$ 操作是 the hinge function max(0, *)。

  第二个是:Triplet embedding

  这个就是著名的三元组损失函数了,即:找一个 anchor,然后找一个正样本,一个负样本。训练的目的就是:鼓励网络找到一个 embedding 使得 xa and xn 之间的距离大于 xa and xp 加上一个 margin $\alpha$ 的和。损失函数定义为:

  其中,D仍然表示样本之间特征的距离。

  然后就是本文提出的一种度量方法了:

  Deep metric learning via lifted structured feature embedding.

   我们基于训练集合的正负样本,定义了一个结构化的损失函数:  

  其中,P 是正样本的集合,N 是负样本的集合。这个函数提出了两个计算上的挑战:

  1. 非平滑(non-smooth)

  2. 评价和计算其子梯度需要最小化所有样本对若干次。

  我们以两种方式解决了上述挑战:

  首先,我们优化上述函数的一个平滑上界;

  第二,对于大数据常用的方法类似,我们采用随机的方法。

  然而,前人的工作都是用SGD的方法,随机的均匀的选择 pairs or triplets。我们的方法从这之中得到了借鉴:

    (1). it biases the sample towards including "difficult" pairs, just like a subgradient of $J_{i,j}$ would use the close negative pairs;

  (2). 一次采样就充分的利用了一个 mini-batch的全部信息,而不仅仅是两个pair之间的信息。

  为了充分的利用这个 batch,一个关键的 idea 是增强 mini-batch 的优化以利用所有的pairs。

  需要注意的是:随机采样的样本对之间的 negative edges 携带了非常有限的信息。

  

  所以,我们的方法改为并非完全随机,而是引入了重要性采样的元素。我们随机的采样了一些 positive pairs,然后添加了一些他们的 difficult neighbors 来训练 mini-batch. 这个增强增加了子梯度会用到的相关信息。下图展示了一个 positive pair 在一个 batch 中的搜索过程,即:在一个 positive pair 的图像中,我们找到其 close(hard)negative images。  

  注意到我们的方法可以从两端开始搜索,而三元组则仅仅只能和定义好的结构上的元素进行搜索。

  

   此外,搜索 single hardest negative with nested max function 实际上会导致网络收敛到一个 bad local optimum. 所以我们采用了如下的 smooth upper bound,所以 我们的损失函数定义为:  

  其中,P是batch中 positive pairs 集合,N 是negative pairs 的集合。后向传播梯度可以如算法1所示的那样,对应距离的梯度为:

  

    其中的 1[*] 是指示函数,如果括号内的判断为真,那么输出为1,否则就是0.

  本文的算法流程图,如下所示:

  


  结果展示:

  


    文章总结

  可以看出,本文是在三元组损失函数基础上的一个改进。并非仅仅考虑预先定义好的样本之间的差异性,而是考虑到一个 batches 内部 所有的样本之间的差异。在这个过程中,文章中引入了类似 hard negative mining 的思想,考虑到正负样本之间的难易程度。并且为了避免网络的训练陷入到 局部最优的bug中去,引入了损失函数的上界来缓解这个问题。

  一个看似不大的改动,却可以发到CVPR,也从某个角度说明了这个方法的价值。

  难道,三元组损失函数就这样被这个算法击败了? 自己当初看到三元组损失函数的时候,为什么就没有忘这个方向去思考呢???

  还有一个疑问是:为什么这种方法的操作,称为:lifted structured feature embedding ?

  难道说,是因为这个左右移动的搜索 hard negative samples 的过程类似于电梯(lift)?那 feature embedding 怎么理解呢? embedding 是映射,难道是:特征映射么??

  

论文笔记之: Deep Metric Learning via Lifted Structured Feature Embedding的更多相关文章

  1. 论文笔记:Deep Residual Learning

    之前提到,深度神经网络在训练中容易遇到梯度消失/爆炸的问题,这个问题产生的根源详见之前的读书笔记.在 Batch Normalization 中,我们将输入数据由激活函数的收敛区调整到梯度较大的区域, ...

  2. 读论文系列:Deep transfer learning person re-identification

    读论文系列:Deep transfer learning person re-identification arxiv 2016 by Mengyue Geng, Yaowei Wang, Tao X ...

  3. 论文笔记——A Deep Neural Network Compression Pipeline: Pruning, Quantization, Huffman Encoding

    论文<A Deep Neural Network Compression Pipeline: Pruning, Quantization, Huffman Encoding> Prunin ...

  4. 【论文阅读】Deep Mutual Learning

    文章:Deep Mutual Learning 出自CVPR2017(18年最佳学生论文) 文章链接:https://arxiv.org/abs/1706.00384 代码链接:https://git ...

  5. 论文解读《Deep Resdual Learning for Image Recognition》

    总的来说这篇论文提出了ResNet架构,让训练非常深的神经网络(NN)成为了可能. 什么是残差? "残差在数理统计中是指实际观察值与估计值(拟合值)之间的差."如果回归模型正确的话 ...

  6. Person Re-identification 系列论文笔记(二):A Discriminatively Learned CNN Embedding for Person Re-identification

    A Discriminatively Learned CNN Embedding for Person Re-identification Zheng Z, Zheng L, Yang Y. A Di ...

  7. 论文笔记:Deep feature learning with relative distance comparison for person re-identification

    这篇论文是要解决 person re-identification 的问题.所谓 person re-identification,指的是在不同的场景下识别同一个人(如下图所示).这里的难点是,由于不 ...

  8. 论文笔记:Deep Attentive Tracking via Reciprocative Learning

    Deep Attentive Tracking via Reciprocative Learning NIPS18_tracking Type:Tracking-By-Detection 本篇论文地主 ...

  9. 论文笔记 — L2-Net: Deep Learning of Discriminative Patch Descriptor in Euclidean Space

    论文: 本文主要贡献: 1.提出了一种新的采样策略,使网络在少数的epoch迭代中,接触百万量级的训练样本: 2.基于局部图像块匹配问题,强调度量描述子的相对距离: 3.在中间特征图上加入额外的监督: ...

随机推荐

  1. ural1057 Amount of Degrees

    链接 这题有一点小坑点 就是AX^B  A只能为0或者1  ,剩下的就比较好做的了. #include <iostream> #include<cstdio> #include ...

  2. 在eclipse中导入weka(小白在路上)

    第一步:新建一个java工程,new->javaproject,假设工程名为wekatest 第二步:导入weka.jar 第三步:src关联 导入后有许多的.class文件,直接双击打开是看不 ...

  3. office openxml学习(一)

    以前用过,aspose.dll处理word ,excel,之后发现 npoi,使用了一段时间,总觉得是第三方,不明白底层的实现,直到最近发现了office openxml ,其实这个技术,很久以前就有 ...

  4. jquery异步加载json格式的数据

    1.直接使用$.getJSON()方法是加载不了与静态界面同级别的本地的json后缀的文件. 2.解决办法:将json后缀的文件改为js后缀,这样就相当于加载了一个js文件. 解决办法:用$.getS ...

  5. 禁止Android 横屏竖屏切换

    在Android中要让一个程序的界面始终保持一个方向,不随手机方向转动而变化的办法: 只要在AndroidManifest.xml里面配置一下就可以了. 在AndroidManifest.xml的ac ...

  6. 如何使CSS3中的animation动画当每滑到一屏时每次都运行

    这个我还没用过,但感觉以后会用到,就随手摘抄一下啦<div id="a1"></div> <div id="a2">< ...

  7. iOS开发多线程篇—GCD介绍

    iOS开发多线程篇—GCD介绍 一.简单介绍 1.什么是GCD? 全称是Grand Central Dispatch,可译为“牛逼的中枢调度器” 纯C语言,提供了非常多强大的函数 2.GCD的优势 G ...

  8. oracle数据库的乱码问题解决方案

    我的电脑-----高级系统设置----高级-----环境变量 LANG=zh_CN.GBK NLS_LANG=SIMPLIFIED CHINESE_CHINA.ZHS16GBK

  9. JavaScript 语句

    JavaScript 语句 JavaScript 语句向浏览器发出的命令.语句的作用是告诉浏览器该做什么. JavaScript 语句 JavaScript 语句是发给浏览器的命令. 这些命令的作用是 ...

  10. sql2008 无法附加数据库

    sql2008 因为数据库正在使用,所以无法获得对数据库的独占访问权---还原或删除数据库的解决方法 数据库还原出现 3154错误 --主备份 --RESTORE DATABASE [NET_CN] ...