PDF下载链接

PMF

If the random variable $X$ follows the binomial distribution with parameters $n$ and $p$, we write $X \sim B(n, p)$. The probability of getting exactly $x$ successes in $n$ trials is given by the probability mass function: $$f(x; n, p) = \Pr(X=x) = {n\choose x}p^{x}(1-p)^{n-x}$$ for $x=0, 1, 2, \cdots$ and ${n\choose x} = {n!\over(n-x)!x!}$.

Proof:

$$ \begin{align*} \sum_{x=0}^{\infty}f(x; n, p) &= \sum_{x=0}^{\infty}{n\choose x}p^{x}(1-p)^{n-x}\\ &= [p + (1-p)]^{n}\;\;\quad\quad \mbox{(binomial theorem)}\\ &= 1 \end{align*} $$

Mean

The expected value is $$\mu = E[X] = np$$

Proof:

$$ \begin{align*} E\left[X^k\right] &= \sum_{x=0}^{\infty}x^{k}{n\choose x}p^{x}(1-p)^{n-x}\\ &= \sum_{x=1}^{\infty}x^{k}{n\choose x}p^{x}(1-p)^{n-x}\\ &= np\sum_{x=1}^{\infty}x^{k-1}{n-1\choose x-1}p^{x-1}(1-p)^{n-x}\quad\quad\quad (\mbox{identity}\ x{n\choose x} = n{n-1\choose x-1})\\ &= np\sum_{y=0}^{\infty}(y+1)^{k-1}{n-1\choose y}p^{y}(1-p)^{n-1-y}\quad(\mbox{substituting}\ y=x-1)\\ &= npE\left[(Y + 1)^{k-1}\right] \quad\quad\quad \quad\quad\quad \quad\quad\quad\quad\quad (Y\sim B(n-1, p)) \\ \end{align*} $$ Using the identity $$ \begin{align*} x{n\choose x} &= {x\cdot n!\over(n-x)!x!}\\ & = {n!\over(n-x)!(x-1)!}\\ &= n{(n-1)!\over[(n-1)-(x-1)]!(x-1)!}\\ &= n{n-1\choose x-1} \end{align*} $$ Hence setting $k=1$ we have $$E[X] = np$$

Variance

The variance is $$\sigma^2 = \mbox{Var}(X) = np(1-p)$$

Proof:

$$ \begin{align*} \mbox{Var}(X) &= E\left[X^2\right] - E[X]^2\\ &= npE[Y+1] - n^2p^2\\ & = np\left(E[Y] + 1\right) - n^2p^2\\ & = np[(n-1)p + 1] - n^2p^2\quad\quad (Y\sim B(n-1, p))\\ &= np(1-p) \end{align*} $$

Examples

1. Let $X$ be binomially distributed with parameters $n=10$ and $p={1\over2}$. Determine the expected value $\mu$, the standard deviation $\sigma$, and the probability $P\left(|X-\mu| \geq 2\sigma\right)$. Compare with Chebyshev's Inequality.

Solution:

The binomial mass function is $$f(x) ={n\choose x} p^x \cdot q^{n-x},\ x=0, 1, 2, \cdots$$ where $q=1-p$. The expected value and the standard deviation are $$E[X] = np=5,\ \sigma = \sqrt{npq} = 1.581139$$ The probability that $X$ takes a value more than two standard deviations from $\mu$ is $$ \begin{align*} P\left(|X-\mu| \geq 2\sigma\right) &= P\left(|X-5| \geq 3.2\right)\\ &= P(X\leq 1) + P(X \geq9)\\ &= \sum_{x=0}^{1}{10\choose x}p^{x}(1-p)^{10-x} + \sum_{x=9}^{\infty}{10\choose x}p^{x}(1-p)^{10-x}\\ & = 0.02148437 \end{align*} $$ R code:

sum(dbinom(c(0, 1), 10, 0.5)) + 1 - sum(dbinom(c(0:8), 10, 0.5))
# [1] 0.02148437
pbinom(1, 10, 0.5) + 1 - pbinom(8, 10, 0.5)
# [1] 0.02148438

Chebyshev's Inequality gives the weaker estimation $$P\left(|X - \mu| \geq 2\sigma\right) \leq {1\over2^2} = 0.25$$

2. What is the probability $P_1$ of having at least six heads when tossing a coin ten times?

Solution:

$$ \begin{align*} P(X \geq 6) &= \sum_{x=6}^{10}{10\choose x}0.5^{x}0.5^{10-x}\\ &= 0.3769531 \end{align*} $$ R code:

1 - pbinom(5, 10, 0.5)
# [1] 0.3769531
sum(dbinom(c(6:10), 10, 0.5))
# [1] 0.3769531

3. What is the probability $P_2$ of having at least 60 heads when tossing a coin 100 times?

Solution:

$$ \begin{align*} P(X \geq 60) &= \sum_{x=60}^{100}{100\choose x}0.5^{x}0.5^{100-x}\\ &= 0.02844397 \end{align*} $$ R code:

1 - pbinom(59, 100, 0.5)
# [1] 0.02844397
sum(dbinom(c(60:100), 100, 0.5))
# [1] 0.02844397

Alternatively, we can use normal approximation (generally when $np > 5$ and $n(1-p) > 5$). $\mu = np=50$ and $\sigma = \sqrt{np(1-p)} = \sqrt{25}$. $$ \begin{align*} P(X \geq 60) &= 1 - P(X \leq 59)\\ &= 1- \Phi\left({59.5-50\over \sqrt{25}}\right)\\ &= 1-\Phi(1.9)\\ &= 0.02871656 \end{align*} $$ R code:

1 - pnorm(1.9)
# [1] 0.02871656

4. What is the probability $P_3$ of having at least 600 heads when tossing a coin 1000 times?

Solution: $$ \begin{align*} P(X \geq 600) &= \sum_{x=600}^{1000}{1000\choose x} 0.5^{x} 0.5^{1000-x}\\ &= 1.364232\times10^{-10} \end{align*} $$ R code:

sum(dbinom(c(600:100), 1000, 0.5))
# [1] 1
sum(dbinom(c(600:1000), 1000, 0.5))
# [1] 1.364232e-10

Alternatively, we can use normal approximation. $\mu = np=500$ and $\sigma = \sqrt{np(1-p)} = \sqrt{250}$. $$ \begin{align*} P(X \geq 600) &= 1 - P(X \leq 599)\\ &= 1- \Phi\left({599.5-500\over \sqrt{250}}\right)\\ &= 1.557618 \times 10^{-10} \end{align*} $$ R code:

1 - pnorm(99.5/sqrt(250))
# [1] 1.557618e-10

Reference

  1. Ross, S. (2010). A First Course in Probability (8th Edition). Chapter 4. Pearson. ISBN: 978-0-13-603313-4.
  2. Brink, D. (2010). Essentials of Statistics: Exercises. Chapter 5 & 8. ISBN: 978-87-7681-409-0.

基本概率分布Basic Concept of Probability Distributions 1: Binomial Distribution的更多相关文章

  1. 基本概率分布Basic Concept of Probability Distributions 5: Hypergemometric Distribution

    PDF version PMF Suppose that a sample of size $n$ is to be chosen randomly (without replacement) fro ...

  2. 基本概率分布Basic Concept of Probability Distributions 8: Normal Distribution

    PDF version PDF & CDF The probability density function is $$f(x; \mu, \sigma) = {1\over\sqrt{2\p ...

  3. 基本概率分布Basic Concept of Probability Distributions 7: Uniform Distribution

    PDF version PDF & CDF The probability density function of the uniform distribution is $$f(x; \al ...

  4. 基本概率分布Basic Concept of Probability Distributions 6: Exponential Distribution

    PDF version PDF & CDF The exponential probability density function (PDF) is $$f(x; \lambda) = \b ...

  5. 基本概率分布Basic Concept of Probability Distributions 3: Geometric Distribution

    PDF version PMF Suppose that independent trials, each having a probability $p$, $0 < p < 1$, o ...

  6. 基本概率分布Basic Concept of Probability Distributions 2: Poisson Distribution

    PDF version PMF A discrete random variable $X$ is said to have a Poisson distribution with parameter ...

  7. 基本概率分布Basic Concept of Probability Distributions 4: Negative Binomial Distribution

    PDF version PMF Suppose there is a sequence of independent Bernoulli trials, each trial having two p ...

  8. PRML Chapter 2. Probability Distributions

    PRML Chapter 2. Probability Distributions P68 conjugate priors In Bayesian probability theory, if th ...

  9. Common Probability Distributions

    Common Probability Distributions Probability Distribution A probability distribution describes the p ...

随机推荐

  1. 国内优秀Android学习资源

    技术博客 应用开发 博主 博客 备注 任玉刚 CSDN博客 深入Android应用开发,深度与广度兼顾 郭霖 CSDN博客 内容实用,行文流畅,高人气博主 夏安明 CSDN博客   张鸿洋 CSDN博 ...

  2. C#基础之IEnumerable

    1.IEnumerable的作用 在使用Linq查询数据时经常以IEnumerable<T>来作为数据查询返回对象,在使用foreach进行遍历时需要该对象实现IEnumerable接口, ...

  3. [转]Windows 8.1删除这台电脑中视频/文档/下载等六个文件夹的方法

    Windows 8.1 已将“计算机”正式更名为“这台电脑”,当我们双击打开“这台电脑”后,也会很明显得发现另外一些变化:Windows 8.1  默认将视频.图片.文档.下载.音乐.桌面等常用文件夹 ...

  4. AutoMapperHelper

    /// <summary> /// AutoMapper帮助类 /// </summary> public static class AutoMapperHelper { // ...

  5. yii2权限控制rbac之菜单menu最详细教程

    前面我们在博文 yii2搭建完美后台并实现rbac权限控制实例教程中完美实现了yii2的后台搭建和rbac权限控制,如果你还没有实现,请先看上文再回来参考本文,因为本文是在上文的基础上进行完善和补充. ...

  6. jq不包含某属性

    jq解释属性选择器时有以下四种: 上面都是带某属性或者属性为某值的情况,还有一种情况是不带某属性怎么办? 答案是同属性不为某值. 如 <a b='c' class="d"&g ...

  7. Beta版本冲刺Day3

    会议讨论: 628:已经将原本写在jsp中的所有界面修饰代码转移到了css文件中,同时当页面跳转的时候也不会出现崩溃的现象,并且已经解决了上次无法连接数据库的问题.但是又遇到了一些新的小问题,希望明天 ...

  8. jQuery基础--样式篇(1)

    1.jQuery简介:JQuery是继prototype之后又一个优秀的Javascript库.它是轻量级的js库 ,它兼容CSS3,还兼容各种浏览器(IE 6.0+, FF 1.5+, Safari ...

  9. Activity has leaked window that was originally added -界面退出时未关闭对话框异常 android.view.WindowManager$BadTokenException: Unable to add window -- token null is not valid; is your activity running? -

    退出Activity时弹出登录框,点击确定finish当前Activity,结果报了这个错,随后查找资料知道 原因: 是因为退出Activity时没有关闭弹出框,出现了这个错误 解决方法: 只需要在a ...

  10. caffe使用

    训练时, solver.prototxt中使用的是train_val.prototxt ./build/tools/caffe/train -solver ./models/bvlc_referenc ...