欧拉路径是指能从一个点出发能够“一笔画”完整张图的路径;(每条边只经过一次而不是点)
在无向图中:如果每个点的度都为偶数 那么这个图是欧拉回路;如果最多有2个奇数点,那么出发点和到达点必定为
该2点,那么这个路径就为欧拉路;(前提都是该图连通)
在有向图中:如果每个店的出度和入度都相同,那么为欧拉回路;如果最多只能有2个点的出度不等于入度,并且其中
一个点的 入度=出度+1,另一点的 入度+1=出度,那么为欧拉路;(前提图连通)

//因为字符从第一个到最后一个,所以用有向图
#include<stdio.h>
#include<string.h>
#include<stack>
using namespace std;
char ch[];
int map[][],n,m,pa[];
int r[],c[],vis[];
stack<int>s;
void inint()
{
  int i;
  for(i=;i<=;i++)
  {
    pa[i]=i;
  }
}
int find(int x)
{
  if(x!=pa[x])
    pa[x]=find(pa[x]);
  return pa[x];
}
int main()
{
  int i,j;
  int t;
  scanf("%d",&t);
  while(t--)
  {
    scanf("%d",&m);
    memset(vis,,sizeof(vis));
    inint();
    memset(r,,sizeof(r));
    memset(c,,sizeof(c));
    memset(map,,sizeof(map));
    for(i=;i<m;i++)
    {
      scanf("%s",&ch);
      int l=strlen(ch);
      map[ch[]-'a'+][ch[l-]-'a'+]=;
      r[ch[]-'a'+]++;c[ch[l-]-'a'+]++;
      int x,y;
      x=find(ch[]-'a'+);
      y=find(ch[l-]-'a'+);
      vis[ch[]-'a'+]=;
      vis[ch[l-]-'a'+]=;
      if(x!=y)
        pa[x]=y;
    }
    int sum=;
    for(i=;i<=;i++)
    {
      if(pa[i]==i&&vis[i])
      {
        sum++;
      }
      if(sum>)
        break;
    }
    if(sum>) //未连通
    {
      printf("The door cannot be opened.\n");
      continue;
    }
    sum=;
    for(i=;i<=;i++)
    {
      if(vis[i]&&(c[i]!=r[i]))//寻找出度入度不相同的点
      {
        sum++;
        s.push(i);
      }
    }
    if(sum>)//多余2个
      printf("The door cannot be opened.\n");
    else if(sum==)//出度入度全相同
      printf("Ordering is possible.\n");
    else if(sum==)
    {
      int x1,x2;
      x1=s.top();
      s.pop();
      x2=s.top();
      s.pop();
      if((c[x1]+==r[x1])&&(c[x2]==r[x2]+)||(c[x2]+==r[x2])&&(c[x1]==r[x1]+))//判断是否条件成立
      {
        printf("Ordering is possible.\n");
      }
      else printf("The door cannot be opened.\n");
    }
    else
      printf("Ordering is possible.\n");
  }
}

hdu1161 欧拉路的更多相关文章

  1. 洛谷P1341 无序字母对[无向图欧拉路]

    题目描述 给定n个各不相同的无序字母对(区分大小写,无序即字母对中的两个字母可以位置颠倒).请构造一个有n+1个字母的字符串使得每个字母对都在这个字符串中出现. 输入输出格式 输入格式: 第一行输入一 ...

  2. POJ1386Play on Words[有向图欧拉路]

    Play on Words Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 11846   Accepted: 4050 De ...

  3. UVA10054The Necklace (打印欧拉路)

    题目链接 题意:一种由彩色珠子组成的项链.每个珠子的两半由不同的颜色组成.相邻的两个珠子在接触的地方颜色相同.现在有一些零碎的珠子,需要确定他们是否可以复原成完整的项链 分析:之前也没往欧拉路上面想, ...

  4. 洛谷 P1341 无序字母对 Label:欧拉路 一笔画

    题目描述 给定n个各不相同的无序字母对(区分大小写,无序即字母对中的两个字母可以位置颠倒).请构造一个有n+1个字母的字符串使得每个字母对都在这个字符串中出现. 输入输出格式 输入格式: 第一行输入一 ...

  5. POJ 1637 Sightseeing tour (混合图欧拉路判定)

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6986   Accepted: 2901 ...

  6. hihocoder 1181 欧拉路.二

    传送门:欧拉路·二 #1181 : 欧拉路·二 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 在上一回中小Hi和小Ho控制着主角收集了分散在各个木桥上的道具,这些道具其 ...

  7. hiho48 : 欧拉路·一

    时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho最近在玩一个解密类的游戏,他们需要控制角色在一片原始丛林里面探险,收集道具,并找到最后的宝藏.现在他们控制的 ...

  8. hdu5883 The Best Path(欧拉路)

    题目链接:hdu5883 The Best Path 比赛第一遍做的时候没有考虑回路要枚举起点的情况导致WA了一发orz 节点 i 的贡献为((du[i] / 2) % 2)* a[i] 欧拉回路的起 ...

  9. hihoCoder #1182 欧拉路·三 (变形)

    题意: 写出一个环,环上有2^n个格子,每个格子中的数字是0或1,相连着的n个格子可以组成一个数的二进制,要求给出这2^n个数字的序列,使得组成的2^n个数字全是不同的.(即从0到2^n-1) 思路: ...

随机推荐

  1. 第8章 用户模式下的线程同步(1)_Interlocked系列函数

    8.1 原子访问:Interlocked系列函数(Interlock英文为互锁的意思) (1)原子访问的原理 ①原子访问:指的是一线程在访问某个资源的同时,能够保证没有其他线程会在同一时刻访问该资源. ...

  2. win10的安装与下载

    1.下载介质创建工具 https://www.microsoft.com/zh-cn/software-download/windows10 2. 下载iso https://www.microsof ...

  3. javascript的几个小技巧

    1.在循环中缓存array.length 这个技巧很简单,这个在处理一个很大的数组循环时,对性能影响将是非常大的.基本上,大家都会写一个这样的同步迭代的数组. for(var i=0;i<arr ...

  4. mui禁止滚动条和禁止滚动

    mui.plusReady(function () { plus.webview.currentWebview().setStyle({ scrollIndicator: 'none' }); }); ...

  5. CentOS 6.6 安装redmine

    Redmine是一个开源的.基于Web的项目管理和缺陷跟踪工具.它用日历和甘特图辅助项目及进度可视化显示.同时它又支持多项目管理.Redmine是一个自由开放源码软件解决方案,它提供集成的项目管理功能 ...

  6. django复习笔记3:实战

    1.初始化 2.配置后台,增加测试数据 3.测试urls/views/templates 4.增加静态资源 5.修改样式 6.模版继承 7.增加博文主页 8.增加表单 9.完善新增页面和编辑页面的表单 ...

  7. (原创)mybaits学习三,springMVC和mybatis融合

    上一节,总计了spring和mybaits的融合,这一节,我们来学习springmvc和mybatis融合 最近在弄一个SSM的项目,然后在网上找资料,将资料总结如下 一,开发环境的配置 MyEcli ...

  8. WPF DatePicker默认显示当前日期

    WPF的日历选择控件默认为当前日期,共有两种方法,一种静态,一种动态. 静态的当然写在DatePicker控件的属性里了,动态的写在对应的cs文件里,具体请看下面.     1.方法一:     my ...

  9. 添加Distributor失败

    上周做了一个case,客户无法为SQL Server instance配置remote distributor. 下面分享一下排查问题的过程,希望对您排查类似的问题所有帮助. 客户的环境中的SQL S ...

  10. noi题库(noi.openjudge.cn) 1.7编程基础之字符串T21——T30

    T21:单词替换 描述 输入一个字符串,以回车结束(字符串长度<=100).该字符串由若干个单词组成,单词之间用一个空格隔开,所有单词区分大小写.现需要将其中的某个单词替换成另一个单词,并输出替 ...