Codeforces Round #143 (Div. 2) E. Cactus 无向图缩环+LCA
A connected undirected graph is called a vertex cactus, if each vertex of this graph belongs to at most one simple cycle.
A simple cycle in a undirected graph is a sequence of distinct vertices v1, v2, ..., vt (t > 2), such that for any i (1 ≤ i < t) exists an edge between vertices vi and vi + 1, and also exists an edge between vertices v1 and vt.
A simple path in a undirected graph is a sequence of not necessarily distinct vertices v1, v2, ..., vt (t > 0), such that for any i (1 ≤ i < t)exists an edge between vertices vi and vi + 1 and furthermore each edge occurs no more than once. We'll say that a simple pathv1, v2, ..., vt starts at vertex v1 and ends at vertex vt.
You've got a graph consisting of n vertices and m edges, that is a vertex cactus. Also, you've got a list of k pairs of interesting verticesxi, yi, for which you want to know the following information — the number of distinct simple paths that start at vertex xi and end at vertex yi. We will consider two simple paths distinct if the sets of edges of the paths are distinct.
For each pair of interesting vertices count the number of distinct simple paths between them. As this number can be rather large, you should calculate it modulo 1000000007 (109 + 7).
The first line contains two space-separated integers n, m (2 ≤ n ≤ 105; 1 ≤ m ≤ 105) — the number of vertices and edges in the graph, correspondingly. Next m lines contain the description of the edges: the i-th line contains two space-separated integers ai, bi (1 ≤ ai, bi ≤ n) — the indexes of the vertices connected by the i-th edge.
The next line contains a single integer k (1 ≤ k ≤ 105) — the number of pairs of interesting vertices. Next k lines contain the list of pairs of interesting vertices: the i-th line contains two space-separated numbers xi, yi (1 ≤ xi, yi ≤ n; xi ≠ yi) — the indexes of interesting vertices in the i-th pair.
It is guaranteed that the given graph is a vertex cactus. It is guaranteed that the graph contains no loops or multiple edges. Consider the graph vertices are numbered from 1 to n.
Print k lines: in the i-th line print a single integer — the number of distinct simple ways, starting at xi and ending at yi, modulo1000000007 (109 + 7).
10 11
1 2
2 3
3 4
1 4
3 5
5 6
8 6
8 7
7 6
7 9
9 10
6
1 2
3 5
6 9
9 2
9 3
9 10
2
2
2
4
4
1
题意:
给你n个点,m条边的无向图,给出下面定义
一般简单路的定义是一条无重复边和不经过重复点的路径,题述的定义是:可以经过重复点但无重复边的路径
无向图中的任意一点只属于一个简单环,然后询问任何两点间有多少条不同的简单路。
题解:
任意一点只属于一个简单环
我们先缩环
每个环当做点,那么在询问a到b的时候,环中点个数超过1的时候 就是存在两种走法,否则是1种,这个我们将它当作点权就好
就相当于 求出一个树的LCA和点权乘
每个点权求法和求lca中fa数组是一样的
#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18;
const double Pi = acos(-1.0);
const int N = 1e5+, M = 1e6, mod = 1e9+, inf = 2e9; int n,m,low[N],dfn[N],inq[N],q[N],top,tot,t,head[N],hav[N],scc,belong[N]; struct node{int to,next,id;}e[N * ];
void add(int u,int v) {e[t].next=head[u];e[t].to=v;e[t].id=;head[u]=t++;} int dp[N][],fa[N][],dep[N];
vector<int > G[N];
void dfs(int u) {
dfn[u] = low[u] = ++tot;
q[++top] = u; inq[u] = ;
for(int i = head[u]; i; i = e[i].next) {
int to = e[i].to;
if(e[i].id) continue;
e[i].id = e[i^].id = ;
if(!dfn[to]) {
dfs(to);
low[u] = min(low[u],low[to]);
} else if(inq[to]) low[u] = min(low[u],dfn[to]);
}
if(low[u] == dfn[u]) {
scc++;
do{
inq[q[top]] = ;
belong[q[top]] = scc;
hav[scc] += ;
} while(u != q[top--]);
}
}
void rebuild() {
for(int i = ; i <= n; ++i) {
for(int j = head[i]; j; j = e[j].next) {
int to = e[j].to;
int x = belong[to];
int y = belong[i];
if(x != y) {
G[x].push_back(y);
}
}
}
}
void Tarjan() {
for(int i = ; i <= n; ++i) if(!dfn[i]) dfs(i);
rebuild();
for(int i = ; i <= scc; ++i) hav[i] = min(hav[i],);
} ////
void lca_dfs(int u,int p,int d) {
fa[u][] = p, dep[u] = d;
dp[u][] = hav[u];
for(int i = ; i < G[u].size(); ++i) {
int to = G[u][i];
if(to == p) continue;
lca_dfs(to,u,d+);
}
}
void lca_init() {
for(int i = ; i <= ; ++i) {
for(int j = ; j <= n; ++j) {
if(fa[j][i-]) {
dp[j][i] = (1ll * dp[j][i-] * dp[fa[j][i-]][i-]) % mod;
fa[j][i] = fa[fa[j][i-]][i-];
} else {
fa[j][i] = ;
dp[j][i] = ;
}
}
}
}
int lca(int x,int y) {
if(dep[x] > dep[y]) swap(x,y);
int ret = ;
for(int k = ; k < ; ++k) {
if( (dep[y] - dep[x])>>k & )
ret = 1LL * ret * dp[y][k] % mod, y = fa[y][k];
}
if(x == y) return 1LL * ret * hav[x] % mod;
for(int k = ; k >= ; --k) {
if(fa[x][k] != fa[y][k]) {
ret = 1LL * ret * dp[x][k] % mod;
ret = 1LL * ret * dp[y][k] % mod;
x = fa[x][k];
y = fa[y][k];
}
}
return 1LL * ret * dp[x][] % mod * dp[y][] % mod * hav[fa[x][]]% mod;
}
int main() {
scanf("%d%d",&n,&m);
for(int i = ; i <= m; ++i) {
int a,b;
scanf("%d%d",&a,&b);
add(a,b);
add(b,a);
}
Tarjan();
lca_dfs(,,);
lca_init();
int q;
scanf("%d",&q);
while(q--) {
int a,b;
scanf("%d%d",&a,&b);
if(belong[a] == belong[b]) {
puts("");continue;
}
printf("%d\n",lca(belong[a],belong[b]));
}
return ;
}
Codeforces Round #143 (Div. 2) E. Cactus 无向图缩环+LCA的更多相关文章
- Codeforces Round #143 (Div. 2)
A. Team 模拟. B. Magic, Wizardry and Wonders 可以发现\[d=a_1-a_2+a_3-a_4+\cdots\] 那么有\(odd=\lfloor \frac{n ...
- Codeforces Round #143 (Div. 2) (ABCD 思维场)
题目连链接:http://codeforces.com/contest/231 A. Team time limit per test:2 seconds memory limit per test: ...
- codeforces水题100道 第十一题 Codeforces Round #143 (Div. 2) A. Team (brute force)
题目链接:http://www.codeforces.com/problemset/problem/231/A题意:问n道题目当中有多少道题目是至少两个人会的.C++代码: #include < ...
- Codeforces Round #362 (Div. 2) C. Lorenzo Von Matterhorn (类似LCA)
题目链接:http://codeforces.com/problemset/problem/697/D 给你一个有规则的二叉树,大概有1e18个点. 有两种操作:1操作是将u到v上的路径加上w,2操作 ...
- Codeforces Round #343 (Div. 2) E. Famil Door and Roads lca 树形dp
E. Famil Door and Roads 题目连接: http://www.codeforces.com/contest/629/problem/E Description Famil Door ...
- Codeforces Round #425 (Div. 2) Misha, Grisha and Underground(LCA)
Misha, Grisha and Underground time limit per test 2 seconds memory limit per test 256 megabytes inpu ...
- Codeforces Round #111 (Div. 2)
Codeforces Round #111 (Div. 2) C. Find Pair 题意 给\(N(N \le 10^5)\)个数,在所有\(N^2\)对数中求第\(K(K \le N^2)\)对 ...
- Codeforces Round #485 (Div. 2)
Codeforces Round #485 (Div. 2) https://codeforces.com/contest/987 A #include<bits/stdc++.h> us ...
- Codeforces Round #296 (Div. 1) C. Data Center Drama 欧拉回路
Codeforces Round #296 (Div. 1)C. Data Center Drama Time Limit: 2 Sec Memory Limit: 256 MBSubmit: xx ...
随机推荐
- 【leetcode】Wildcard Matching
Wildcard Matching Implement wildcard pattern matching with support for '?' and '*'. '?' Matches any ...
- 【leetcode】Longest Valid Parentheses
Longest Valid Parentheses Given a string containing just the characters '(' and ')', find the length ...
- mysql性能优化学习笔记-存储引擎
mysql体系架构 客户端(java.php.python等) mysql服务层(连接管理器.查询解析器.查询优化器.查询缓存) mysql存储引擎(innodb.myisam等) 存储引擎针对表而言 ...
- ios Swift 一些注意事项
func test(one:NSString) -> NSString{ return "aaa" } func test(one:Int) -> NSString{ ...
- ABAP ALV单个单元格状态编辑
*&---------------------------------------------------------------------* *& Report ZPPR0024 ...
- HDU 5831 Rikka with Parenthesis II (贪心) -2016杭电多校联合第8场
题目:传送门. 题意:T组数据,每组给定一个长度n,随后给定一个长度为n的字符串,字符串只包含'('或')',随后交换其中两个位置,必须交换一次也只能交换一次,问能否构成一个合法的括号匹配,就是()( ...
- CentOS yum的详细使用方法
yum是什么yum = Yellow dog Updater, Modified主要功能是更方便的添加/删除/更新RPM包.它能自动解决包的倚赖性问题.它能便于管理大量系统的更新问题yum特点可以同时 ...
- !gluLookAt与glOrtho 参数解析
void gluLookAt( GLdouble eyeX, GLdouble eyeY, GLdouble eyeZ, GLdouble centerX, GLdouble centerY, GLd ...
- Linux Window Redis安装
Linux 下简易的安装过程: 1.源码安装之前要先安装gcc,不然编译会出错, 2.下载源码,去http://download.redis.io/releases/这个文件夹内找想安装的版本,我下载 ...
- DB2 bind on z/os
BIND and REBIND options for packages and plans There are several options you can use for binding or ...