转自:http://blog.csdn.net/wsywl/article/details/5727327

由于使用的统计相关系数比较频繁,所以这里就利用几篇文章简单介绍一下这些系数。

相关系数:考察两个事物(在数据里我们称之为变量)之间的相关程度。

如果有两个变量:X、Y,最终计算出的相关系数的含义可以有如下理解:

(1)、当相关系数为0时,X和Y两变量无关系。

(2)、当X的值增大(减小),Y值增大(减小),两个变量为正相关,相关系数在0.00与1.00之间。

(3)、当X的值增大(减小),Y值减小(增大),两个变量为负相关,相关系数在-1.00与0.00之间。

相关系数的绝对值越大,相关性越强,相关系数越接近于1或-1,相关度越强,相关系数越接近于0,相关度越弱。

通常情况下通过以下取值范围判断变量的相关强度:
相关系数     0.8-1.0     极强相关
                 0.6-0.8     强相关
                 0.4-0.6     中等程度相关
                 0.2-0.4     弱相关
                 0.0-0.2     极弱相关或无相关

Pearson(皮尔逊)相关系数

1、简介

皮尔逊相关也称为积差相关(或积矩相关)是英国统计学家皮尔逊于20世纪提出的一种计算直线相关的方法。

假设有两个变量X、Y,那么两变量间的皮尔逊相关系数可通过以下公式计算:

公式一:

公式二:

公式三:

公式四:

以上列出的四个公式等价,其中E是数学期望,cov表示协方差,N表示变量取值的个数。

2、适用范围

当两个变量的标准差都不为零时,相关系数才有定义,皮尔逊相关系数适用于:

(1)、两个变量之间是线性关系,都是连续数据。

(2)、两个变量的总体是正态分布,或接近正态的单峰分布。

(3)、两个变量的观测值是成对的,每对观测值之间相互独立。

3、Matlab实现

皮尔逊相关系数的Matlab实现(依据公式四实现):

  1. function coeff = myPearson(X , Y)
  2. % 本函数实现了皮尔逊相关系数的计算操作
  3. %
  4. % 输入:
  5. %   X:输入的数值序列
  6. %   Y:输入的数值序列
  7. %
  8. % 输出:
  9. %   coeff:两个输入数值序列X,Y的相关系数
  10. %
  11. if length(X) ~= length(Y)
  12. error('两个数值数列的维数不相等');
  13. return;
  14. end
  15. fenzi = sum(X .* Y) - (sum(X) * sum(Y)) / length(X);
  16. fenmu = sqrt((sum(X .^2) - sum(X)^2 / length(X)) * (sum(Y .^2) - sum(Y)^2 / length(X)));
  17. coeff = fenzi / fenmu;
  18. end %函数myPearson结束

也可以使用Matlab中已有的函数计算皮尔逊相关系数:

  1. coeff = corr(X , Y);

4、参考内容

http://zh.wikipedia.org/zh-cn/%E7%9B%B8%E5%85%B3

 
 

Pearson(皮尔逊)相关系数及MATLAB实现的更多相关文章

  1. Pearson(皮尔逊)相关系数

    Pearson(皮尔逊)相关系数:也叫pearson积差相关系数.衡量两个连续变量之间的线性相关程度. 当两个变量都是正态连续变量,而且两者之间呈线性关系时,表现这两个变量之间相关程度用积差相关系数, ...

  2. np.corrcoef()方法计算数据皮尔逊积矩相关系数(Pearson's r)

    上一篇通过公式自己写了一个计算两组数据的皮尔逊积矩相关系数(Pearson's r)的方法,但np已经提供了一个用于计算皮尔逊积矩相关系数(Pearson's r)的方法 np.corrcoef()  ...

  3. pandas通过皮尔逊积矩线性相关系数(Pearson's r)计算数据相关性

    皮尔逊积矩线性相关系数(Pearson's r)用于计算两组数组之间是否有线性关联,举个例子: a = pd.Series([1,2,3,4,5,6,7,8,9,10]) b = pd.Series( ...

  4. 皮尔逊(Pearson)系数矩阵——numpy

    一.原理 注意 专有名词.(例如:极高相关) 二.代码 import numpy as np f = open('../file/Pearson.csv', encoding='utf-8') dat ...

  5. 皮尔逊相似度计算的例子(R语言)

    编译最近的协同过滤算法皮尔逊相似度计算.下顺便研究R简单使用的语言.概率统计知识. 一.概率论和统计学概念复习 1)期望值(Expected Value) 由于这里每一个数都是等概率的.所以就当做是数 ...

  6. 皮尔逊残差 | Pearson residual

    参考:Pearson Residuals 这些概念到底是写什么?怎么产生的? 统计学功力太弱了!

  7. Spark Mllib里的如何对两组数据用皮尔逊计算相关系数

    不多说,直接上干货! import org.apache.spark.mllib.stat.Statistics 具体,见 Spark Mllib机器学习实战的第4章 Mllib基本数据类型和Mlli ...

  8. 从欧几里得距离、向量、皮尔逊系数到http://guessthecorrelation.com/

    一.欧几里得距离就是向量的距离公式 二.皮尔逊相关系数反应的就是线性相关 游戏http://guessthecorrelation.com/ 的秘诀也就是判断一组点的拟合线的斜率y/x ------- ...

  9. Python基于皮尔逊系数实现股票预测

    # -*- coding: utf-8 -*- """ Created on Mon Dec 2 14:49:59 2018 @author: zhen "&q ...

随机推荐

  1. ZooKeeper日志与快照文件简单分析

    有用过Zookeeper的都知道zoo.cfg配置文件中有dataDir配置项用于存储数据,不过可能有些人不太清楚这个目录具体存储的是那些数据,默认情况下这个目录是用于存储Log(事务日志)与Snap ...

  2. Linux IPC POSIX 信号量

    模型 #include<semaphore.h> #include<sys/stat.h> #include<fcntl.h> sem_open() //初始化并打 ...

  3. sed入门详解教程

    sed是一个比较古老的,功能十分强大的用于文本处理的流编辑器,加上正则表达式的支持,可以进行大量的复杂的文本编辑操作.sed本身是一个非常复杂的工具,有专门的书籍讲解sed的具体用法,但是个人觉得没有 ...

  4. 关于/etc/rc.local以及/etc/init.d

    1. /etc/rc.local    这是使用者自订开机启动程序,把需要开机自动运行的程序写在这个脚本里   --------引用----------------------  在完成 run le ...

  5. android RelativeLayout 动态设置高度

    定义: private RelativeLayout mrlay; 调高度: mrlay = (RelativeLayout) findViewById(R.id.rlay_1); android.v ...

  6. 十、Android学习第九天——小结(转)

    (转自:http://wenku.baidu.com/view/af39b3164431b90d6c85c72f.html) 十.Android学习第九天——小结 通过这段时间的学习,今晚上来做个小小 ...

  7. view类的setVisibility

    android view setVisibility():有三个参数:Parameters:visibility One of VISIBLE, INVISIBLE, or GONE,想对应的三个常量 ...

  8. C#编程普通型计算器 经验与感悟

    先贴图: 这是用C# 语言编写的普通型计算器,功能基本模仿Windows8自带计算器程序(版本6.3,内部版本9600).支持加.减.乘.除.退格.清除.平方根.倒数.相反数.连续四则.连续等号.自动 ...

  9. openwrt修改flash大小

    前言 默认openwrt trunk编译出来的flash大小为8M,但是我们手上的板子可能flash大小更大,本文以MT7620a为例,将其flash大小由8M修改为16M或者32M 增加dts文件 ...

  10. ASP.NET Web API 安全筛选器

    原文:https://msdn.microsoft.com/zh-cn/magazine/dn781361.aspx 身份验证和授权是应用程序安全的基础.身份验证通过验证提供的凭据来确定用户身份,而授 ...