台大《机器学习基石》课程感受和总结---Part 1(转)
期末终于过去了,看看别人的总结:http://blog.sina.com.cn/s/blog_641289eb0101dynu.html
接触机器学习也有几年了,不过仍然只是个菜鸟,当初接触的时候英文不好,听不懂课,什么东西都一知半解。断断续续的自学了一些公开课和书以后,开始逐渐理解一些概念。据说,心得要写下来才记得住。据说,心得要与人分享。这里是自己一点非常粗浅的感想或者遇到的问题,不一定对,请自带滤镜。有大牛的看到了请指出错误,求轻拍,求指导。
- 有pattern,比如银行如何决定是不是给用户发信用卡。
- 这个pattern说不太清楚,没有明确的公式或者过程(要有了就直接用,还学个什么劲儿)
- 要有数据,没数据从哪里学...
- H复杂度越高,Ein越小,但是Eout有可能就很大。(Overfit)
- 反过来H复杂度不够,Ein可能较大,但是Ein和Eout之间的差别可能不大。(Underfit)
- 数据集太小,没几个点可以学。
- 数据的noise太大(stochastic noise,随机噪声)
- 使用的模型太复杂(这也是一种noise,叫做deterministic noise)
- 模型相对数据来说太复杂(叫做excessive power,这一点可以和第三点合二为一)
- H2 = H10从3次方开始系数都是0 (这看上去貌似是多次一举);
- 放宽条件-> H10任意3个系数不是0,其余是0;
- 继续放宽条件->H10的系数的平方和小于C(wTw <= C)(这样,既可以享受H10的能力/复杂度,又不会太过)。
- 我们需要将数据分成三个部分(训练,检验,和测试三个数据集)。各个模型在训练数据上进行训练,会从自己的Hypothesis set中选出一个最佳的假设g作为这个假设集合的代表。
- 然后,各位代表再到检验数据上试一下效果如何,最后我们选择在检验数据上表现最好的g所对应的那个模型M。
- 再将训练和检验数据合并起来,让M在这个合并的数据上再去得到一个最终的假设g*,作为最终用来近似target function的结果。
- 那么这个g*到底表现怎样,我们可以在测试数据上测一下,作为g*能力的评判。
台大《机器学习基石》课程感受和总结---Part 1(转)的更多相关文章
- Coursera台大机器学习基础课程学习笔记1 -- 机器学习定义及PLA算法
最近在跟台大的这个课程,觉得不错,想把学习笔记发出来跟大家分享下,有错误希望大家指正. 一机器学习是什么? 感觉和 Tom M. Mitchell的定义几乎一致, A computer program ...
- Coursera台大机器学习基础课程学习笔记2 -- 机器学习的分类
总体思路: 各种类型的机器学习分类 按照输出空间类型分Y 按照数据标记类型分yn 按照不同目标函数类型分f 按照不同的输入空间类型分X 按照输出空间类型Y,可以分为二元分类,多元分类,回归分析以及结构 ...
- Coursera台大机器学习基础课程1
Coursera台大机器学习基础课程学习笔记 -- 1 最近在跟台大的这个课程,觉得不错,想把学习笔记发出来跟大家分享下,有错误希望大家指正. 一 机器学习是什么? 感觉和 Tom M. Mitche ...
- Coursera台大机器学习技法课程笔记01-linear hard SVM
极其淡腾的一学期终于过去了,暑假打算学下台大的这门机器学习技法. 第一课是对SVM的介绍,虽然之前也学过,但听了一次感觉还是很有收获的.这位博主总结了个大概,具体细节还是 要听课:http://www ...
- Coursera台大机器学习技法课程笔记14-Radial Basis Function Network
将Radial Basis Function与Network相结合.实际上衡量两个点的相似性:距离越近,值越大. 将神经元换为与距离有关的函数,就是RBF Network: 可以用kernel和RBF ...
- Coursera台大机器学习技法课程笔记03-Kernel Support Vector Machine
这一节讲的是核化的SVM,Andrew Ng的那篇讲义也讲过,讲的也不错. 首先讲的是kernel trick,为了简化将低维特征映射高维特征后的计算,使用了核技巧.讲义中还讲了核函数的判定,即什么样 ...
- Coursera台大机器学习技法课程笔记11-Gradient Boosted Decision Tree
将Adaboost和decision tree相结合,需要注意的地主是,训练时adaboost需要改变资料的权重,如何将有权重的资 料和decision tree相结合呢?方法很类似于前面讲过的bag ...
- Coursera台大机器学习技法课程笔记10-Random forest
随机森林就是要将这我们之前学的两个算法进行结合:bagging能减少variance(通过g们投票),而decision tree的variance很大,资料不同,生成的树也不同. 为了得到不同的g, ...
- Coursera台大机器学习技法课程笔记04-Soft-Margin Support Vector Machine
之前的SVM非常的hard,要求每个点都要被正确的划分,这就有可能overfit,为此引入了Soft SVM,即允许存在被错分的点,将犯的错放在目 标函数中进行优化,非常类似于正则化. 将Soft S ...
- Coursera台大机器学习技法课程笔记02-Dual Support Vector Machine
这节课讲的是SVM的对偶问题,比较精彩的部分:为何要使用拉格朗日乘子以及如何进行对偶变换. 参考:http://www.cnblogs.com/bourneli/p/4199990.html http ...
随机推荐
- Unity Networking API文档翻译(二):The High Level API
高级API (HLAPI) 是用来提供给Unity 创建多人在线游戏的组件.它是在底层传输层的基础上构建的, 对多人在线游戏提供了很多通用的功能.当传输层支持各种网络拓扑结构的时候,HLAPI是一个功 ...
- [USACO2005][POJ2228]Naptime(对特殊环状DP的处理)
题目:http://poj.org/problem?id=2228 题意:将一天分为N小时,每小时都有一个价值w,有一头牛要睡觉,而它的睡觉是连续的,且第一小时不能算价值,即如果你睡了[a,b],则你 ...
- 练习一_使用Git进行代码管理的心得
2015年9月19日,第一次软工实践课.助教给我们介绍了git,GitHub.显而易见,我并没有听懂.所以整个上午都在找教程,一个字一个字对着敲,然后敲着敲着就出错,回宿舍,继续敲,也是一样的... ...
- opencv笔记1:opencv的基本模块,以及环境搭建
opencv笔记1:opencv的基本模块,以及环境搭建 安装系统 使用fedora22-workstation-x86_64 安装opencv sudo dnf install opencv-dev ...
- BZOJ1207 [HNOI2004]打鼹鼠
Description 鼹鼠是一种很喜欢挖洞的动物,但每过一定的时间,它还是喜欢 把头探出到地面上来透透气的.根据这个特点阿Q编写了一个打鼹鼠的游戏:在一个n*n的网格中,在某些时刻鼹鼠会在某一个网格 ...
- BZOJ 1066 POJ 2711 [SCOI2007]蜥蜴
与POJ 1815 Friendship类似,该题之前也做过 目前处于TLE状态.样例已经通过 1066: [SCOI2007]蜥蜴 Time Limit: 1 Sec Memory Limit: ...
- groovy-真值
Boolean expressions Groovy支持标准的条件运算符的布尔表达式: 1 def a = true 2 def b = true 3 def c = false 4 assert a ...
- android anr分析方法
目录(?)[+] 案例1关键词ContentResolver in AsyncTask onPostExecute high iowait 案例2关键词在UI线程进行网络数据的读写 一:什么是AN ...
- 用 AIML 开发人工智能聊天机器人
借助 Python 的 AIML 包,我们很容易实现人工智能聊天机器人.AIML 指的是 Artificial Intelligence Markup Language (人工智能标记语言),它不过是 ...
- view视图文件中的input等输入框必须含有name属性,不然控制器里的动作formCollection是没有值的
view视图文件中的input等输入框必须含有name属性,不然控制器里的动作formCollection是没有值的,就是没有name属性,后台获取不到值