Description

相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术。那时人们就认识到,一个法杖的法力取决于使用的矿石。
一般地,矿石越多则法力越强,但物极必反:有时,人们为了获取更强的法力而使用了很多矿石,却在炼制过程中发现魔法矿石全部消失了,从而无法炼制出法杖,这个现象被称为“魔法抵消” 。特别地,如果在炼制过程中使用超过一块同一种矿石,那么一定会发生“魔法抵消”。后来,随着人们认知水平的提高,这个现象得到了很好的解释。经过了大量的实验后,著名法师 Dmitri 发现:如果给现在发现的每一种矿石进行合理的编号(编号为正整数,称为该矿石的元素序号),那么,一个矿石组合会产生“魔法抵消”当且仅当存在一个非空子集,那些矿石的元素序号按位异或起来为零。(如果你不清楚什么是异或,请参见下一页的名词解释。 )例如,使用两
个同样的矿石必将发生“魔法抵消”,因为这两种矿石的元素序号相同,异或起来为零。 并且人们有了测定魔力的有效途径,已经知道了:合成出来的法杖的魔力
等于每一种矿石的法力之和。人们已经测定了现今发现的所有矿石的法力值,并且通过实验推算出每一种矿石的元素序号。
 现在,给定你以上的矿石信息,请你来计算一下当时可以炼制出的法杖最多有多大的魔力。

Input

第一行包含一个正整数N,表示矿石的种类数。
  接下来 N行,每行两个正整数Numberi 和 Magici,表示这种矿石的元素序号
和魔力值。

Output

仅包一行,一个整数:最大的魔力值

Sample Input

3
1 10
2 20
3 30

Sample Output

50

HINT

由于有“魔法抵消”这一事实,每一种矿石最多使用一块。

如果使用全部三种矿石,由于三者的元素序号异或起来:1 xor 2 xor 3 = 0 ,

则会发生魔法抵消,得不到法杖。

可以发现,最佳方案是选择后两种矿石,法力为 20+30=50。

对于全部的数据:N ≤ 1000,Numberi ≤ 10^18,Magici ≤ 10^4。

Source

 
 
正解:线性基+贪心
解题报告:
  今天考试考了线性基,加之昨天做的一道题(也就是今天考试的T3)也是线性基,所以还是特地刷几道题练一下。
  显然这道题可以用线性基来维护一个我们选取的非空子集中不存在异或出0的情况,但是我们还需要得到的权值最大,那么直接对于每件物品按权值排序,按权值从大到小插入到线性基中就可以保证得到的线性基中的元素是权值之和最大的。
 
 
 //It is made by jump~
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
using namespace std;
typedef long long LL;
const int MAXN = ;
int n;
LL ans,p[];
struct thing{
int w;
LL id;
}a[MAXN]; inline int getint()
{
int w=,q=; char c=getchar();
while((c<'' || c>'') && c!='-') c=getchar(); if(c=='-') q=,c=getchar();
while (c>='' && c<='') w=w*+c-'', c=getchar(); return q ? -w : w;
}
inline LL getlong()
{
LL w=,q=; char c=getchar();
while((c<'' || c>'') && c!='-') c=getchar(); if(c=='-') q=,c=getchar();
while (c>='' && c<='') w=w*+c-'', c=getchar(); return q ? -w : w;
}
inline bool cmp(thing q,thing qq){ return q.w>qq.w; } inline void work(){
n=getint(); for(int i=;i<=n;i++) a[i].id=getlong(),a[i].w=getint();
sort(a+,a+n+,cmp);//贪心地插入到线性基当中,权值越大的贡献越大,所以如果能插入线性基当中越早越好
for(int i=;i<=n;i++) {
for(int j=;j>=;j--) {
if(!(a[i].id>>j)) continue;//对线性基的这一位没有贡献
if(!p[j]) { p[j]=a[i].id; break; }//选入线性基中
a[i].id^=p[j];
}
if(a[i].id!=) ans+=a[i].w;
}
printf("%lld",ans);
} int main()
{
work();
return ;
}

BZOJ2460 [BeiJing2011]元素的更多相关文章

  1. bzoj千题计划193:bzoj2460: [BeiJing2011]元素

    http://www.lydsy.com/JudgeOnline/problem.php?id=2460 按魔力值从小到大排序构造线性基 #include<cstdio> #include ...

  2. BZOJ2460 [BeiJing2011]元素 【线性基】

    2460: [BeiJing2011]元素 Time Limit: 20 Sec  Memory Limit: 128 MB Submit: 1675  Solved: 869 [Submit][St ...

  3. BZOJ2460 Beijing2011元素(线性基+贪心)

    按价值从大到小考虑每个元素,维护一个线性基,如果向其中加入该元素的编号仍然构成线性基,则将其加入. 不会证明.当做线性基的一个性质吧. #include<iostream> #includ ...

  4. 【题解】 bzoj2460: [BeiJing2011]元素 (线性基)

    bzoj2460,戳我戳我 Solution: 线性基板子,没啥好说的,注意long long 就好了 Code: //It is coded by Ning_Mew on 5.29 #include ...

  5. 【贪心】【线性基】bzoj2460 [BeiJing2011]元素

    题意:让你求一些数在XOR下的带权极大无关组. 带权极大无关组可以用贪心,将这些数按权值从大到小排序之后,依次检验其与之前的数是否全都线性无关.可以用线性基来搞. 可以用拟阵严格证明,不过也可以脑补一 ...

  6. 【贪心】【线性基】bzoj2460 [BeiJing2011]元素 / bzoj3105 [cqoi2013]新Nim游戏

    p2460: #include<cstdio> #include<algorithm> using namespace std; #define N 1001 typedef ...

  7. [bzoj2460] [BeiJing2011]元素(线性基+贪心)

    题目大意: 有一些矿石,每个矿石有一个a和一个b值,要求选出一些矿石,b的和最大且不存在某个矿石子集它们的a的异或和为0. 解题关键:对魔力进行由大到小排序,依次加入线性基,统计即可. #includ ...

  8. 【BZOJ2460】[BeiJing2011]元素 贪心+高斯消元求线性基

    [BZOJ2460][BeiJing2011]元素 Description 相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术.那时人们就认识到,一个法 ...

  9. 【bzoj2460】[BeiJing2011]元素

    2460: [BeiJing2011]元素 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 692  Solved: 372[Submit][Statu ...

随机推荐

  1. 什么是Activity

    Activity 的生命周期是被以下的函数控制的.public class Activity extends ApplicationContext {      protected void onCr ...

  2. LoadRunner支持的IE版本

    LoadRunner支持的IE版本: 8.0 最高ie68.1 最高ie69.0 最高ie79.5 最高ie811.0 最高ie9( win7 32位+LR11+IE10可用,但win7 64位+LR ...

  3. JsonHelper

    .net下的json序列化在以前没有Newtonsoft.Json崭露头角之前采用System.Web.Script.Serialization命名空间下的JavaScriptSerializer对象 ...

  4. import javax.servlet.FilterConfig;

    具体的使用方法你可以在google上搜索 “filter 过滤器”,FilterConfig可以获取部署描述符文件(web.xml)中分配的过滤器初始化参数.针对你的问题回答,结果就是说FilterC ...

  5. 序列化在Netty中的使用

    Java序列化的缺点 1.无法跨语言 对于Java序列化后的字节数组,别的语言无法进行反序列化 2.序列化后的码流过大 3.序列化性能低 使用JDK自带的序列化进行对象的传输 被传输的,实现了序列化接 ...

  6. 解决centos7重启后出现ata bus error

    昨天把centos7装在电脑上了,还把win7系统格掉了,从此电脑上只装centos,有一种弃暗投明的感觉. 装完重启后欣赏了一番成果,一个halt命令想把系统关掉,却发现屏幕没黑,机器不转了,电源灯 ...

  7. [转]World Wind学习总结一

    WW的纹理,DEM数据,及LOD模型 以earth为例 1. 地形数据: 默认浏览器纹理数据存放在/Cache/Earth/Images/NASA Landsat Imagery/NLT Landsa ...

  8. Wifi开发技术总结1

    摘要: 刚刚接触wifi开发的东西,用的模块是 ESP8266-12E. 资料很多,淘宝地址:https://item.taobao.com/item.htm?spm=a1z09.2.9.10.qGL ...

  9. 亚博 Arduino智能小车实验报告

    亚博 Arduino智能小车实践报告 一.     程序安装准备 首先安装了Arduino板载USB转串口CH340驱动安装包, 若上述程序安装成功,则可以在我的电脑中找到相应的端口 本机端口号为CO ...

  10. SVN中trunk、branches、tags用法详解

    Subversion有一个很标准的目录结构,是这样的.比如项目是proj,svn地址为svn://proj/. 那么标准的svn布局是:svn://proj/|+-trunk+-branches+-t ...