BZOJ2460 [BeiJing2011]元素
Description
相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术。那时人们就认识到,一个法杖的法力取决于使用的矿石。
一般地,矿石越多则法力越强,但物极必反:有时,人们为了获取更强的法力而使用了很多矿石,却在炼制过程中发现魔法矿石全部消失了,从而无法炼制出法杖,这个现象被称为“魔法抵消” 。特别地,如果在炼制过程中使用超过一块同一种矿石,那么一定会发生“魔法抵消”。后来,随着人们认知水平的提高,这个现象得到了很好的解释。经过了大量的实验后,著名法师 Dmitri 发现:如果给现在发现的每一种矿石进行合理的编号(编号为正整数,称为该矿石的元素序号),那么,一个矿石组合会产生“魔法抵消”当且仅当存在一个非空子集,那些矿石的元素序号按位异或起来为零。(如果你不清楚什么是异或,请参见下一页的名词解释。 )例如,使用两
个同样的矿石必将发生“魔法抵消”,因为这两种矿石的元素序号相同,异或起来为零。 并且人们有了测定魔力的有效途径,已经知道了:合成出来的法杖的魔力
等于每一种矿石的法力之和。人们已经测定了现今发现的所有矿石的法力值,并且通过实验推算出每一种矿石的元素序号。
现在,给定你以上的矿石信息,请你来计算一下当时可以炼制出的法杖最多有多大的魔力。
Input
第一行包含一个正整数N,表示矿石的种类数。
接下来 N行,每行两个正整数Numberi 和 Magici,表示这种矿石的元素序号
和魔力值。
Output
仅包一行,一个整数:最大的魔力值
Sample Input
1 10
2 20
3 30
Sample Output
HINT
由于有“魔法抵消”这一事实,每一种矿石最多使用一块。
如果使用全部三种矿石,由于三者的元素序号异或起来:1 xor 2 xor 3 = 0 ,
则会发生魔法抵消,得不到法杖。
可以发现,最佳方案是选择后两种矿石,法力为 20+30=50。
对于全部的数据:N ≤ 1000,Numberi ≤ 10^18,Magici ≤ 10^4。
Source
//It is made by jump~
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
using namespace std;
typedef long long LL;
const int MAXN = ;
int n;
LL ans,p[];
struct thing{
int w;
LL id;
}a[MAXN]; inline int getint()
{
int w=,q=; char c=getchar();
while((c<'' || c>'') && c!='-') c=getchar(); if(c=='-') q=,c=getchar();
while (c>='' && c<='') w=w*+c-'', c=getchar(); return q ? -w : w;
}
inline LL getlong()
{
LL w=,q=; char c=getchar();
while((c<'' || c>'') && c!='-') c=getchar(); if(c=='-') q=,c=getchar();
while (c>='' && c<='') w=w*+c-'', c=getchar(); return q ? -w : w;
}
inline bool cmp(thing q,thing qq){ return q.w>qq.w; } inline void work(){
n=getint(); for(int i=;i<=n;i++) a[i].id=getlong(),a[i].w=getint();
sort(a+,a+n+,cmp);//贪心地插入到线性基当中,权值越大的贡献越大,所以如果能插入线性基当中越早越好
for(int i=;i<=n;i++) {
for(int j=;j>=;j--) {
if(!(a[i].id>>j)) continue;//对线性基的这一位没有贡献
if(!p[j]) { p[j]=a[i].id; break; }//选入线性基中
a[i].id^=p[j];
}
if(a[i].id!=) ans+=a[i].w;
}
printf("%lld",ans);
} int main()
{
work();
return ;
}
BZOJ2460 [BeiJing2011]元素的更多相关文章
- bzoj千题计划193:bzoj2460: [BeiJing2011]元素
http://www.lydsy.com/JudgeOnline/problem.php?id=2460 按魔力值从小到大排序构造线性基 #include<cstdio> #include ...
- BZOJ2460 [BeiJing2011]元素 【线性基】
2460: [BeiJing2011]元素 Time Limit: 20 Sec Memory Limit: 128 MB Submit: 1675 Solved: 869 [Submit][St ...
- BZOJ2460 Beijing2011元素(线性基+贪心)
按价值从大到小考虑每个元素,维护一个线性基,如果向其中加入该元素的编号仍然构成线性基,则将其加入. 不会证明.当做线性基的一个性质吧. #include<iostream> #includ ...
- 【题解】 bzoj2460: [BeiJing2011]元素 (线性基)
bzoj2460,戳我戳我 Solution: 线性基板子,没啥好说的,注意long long 就好了 Code: //It is coded by Ning_Mew on 5.29 #include ...
- 【贪心】【线性基】bzoj2460 [BeiJing2011]元素
题意:让你求一些数在XOR下的带权极大无关组. 带权极大无关组可以用贪心,将这些数按权值从大到小排序之后,依次检验其与之前的数是否全都线性无关.可以用线性基来搞. 可以用拟阵严格证明,不过也可以脑补一 ...
- 【贪心】【线性基】bzoj2460 [BeiJing2011]元素 / bzoj3105 [cqoi2013]新Nim游戏
p2460: #include<cstdio> #include<algorithm> using namespace std; #define N 1001 typedef ...
- [bzoj2460] [BeiJing2011]元素(线性基+贪心)
题目大意: 有一些矿石,每个矿石有一个a和一个b值,要求选出一些矿石,b的和最大且不存在某个矿石子集它们的a的异或和为0. 解题关键:对魔力进行由大到小排序,依次加入线性基,统计即可. #includ ...
- 【BZOJ2460】[BeiJing2011]元素 贪心+高斯消元求线性基
[BZOJ2460][BeiJing2011]元素 Description 相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术.那时人们就认识到,一个法 ...
- 【bzoj2460】[BeiJing2011]元素
2460: [BeiJing2011]元素 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 692 Solved: 372[Submit][Statu ...
随机推荐
- windows客户机连接gerrit的一个报错处理
gerrit环境部署在linux服务器,windos客户机连接gerrit进行代码操作: 在windows客户机下载Git客户端 在“Git Bash”里使用 ”ssh-keygen -t rsa - ...
- [C#] 走进异步编程的世界 - 开始接触 async/await(转)
原文链接:http://www.cnblogs.com/liqingwen/p/5831951.html 走进异步编程的世界 - 开始接触 async/await 序 这是学习异步编程的入门篇. 涉及 ...
- Activiti系列:如何把Activiti工程转换为maven工程以解决依赖项找不到的问题
在eclipse中安装了Activiti插件之后,就可以新建Activiti工程,但是在实际使用时发现,在该工程中间新建Activiti Diagram,绘制好该图形之后,右键,新建单元测试,选择ju ...
- 信息安全系统设计基础实验一:Linux开发环境的配置和使用
北京电子科技学院(BESTI) 实验报告 课程:信息安全系统设计基础 班级:1353 姓名:芦畅 傅冬菁 学号:20135308 20135311 成绩: 指导教师:娄家鹏 ...
- warning: LF will be replaced by CRLF
一. Git提供了一个换行符检查功能(core.safecrlf),可以在提交时检查文件是否混用了不同风格的换行符.这个功能的选项如下: false - 不做任何检查warn - 在提交时检查并警告t ...
- edgesForExtendedLayout、extendedLayoutIncludesOpaqueBars、automaticallyAdjustsScrollViewInsets属性详解 )——转载
edgesForExtendedLayout: 在ios7适配中,布局问题是一个很头痛也很重要的问题,因为在ios7中viewController使用了全屏布局的方式,也就是说导航栏和状态栏都是不占实 ...
- CMD命令下对文件夹进行权限处理 转
保证自己的磁盘分区格式是NTFS.FAT32是不行的. 一.Cacls.exe命令的使用 这是一个在Windows 2000/XP/Server 2003操作系统下都可以使用的命令,作用是显示或者修改 ...
- python的闭包与装饰器
原文发表在我的博客主页,转载请注明出处 前言 如果把python当作脚本语言,每次就是写个几十行上百行来处理数据的话,装饰器也许不是很必要,但是如果要开发一个大型系统,装饰器是躲不开的,最开始体会ry ...
- 数据结构之链表、栈和队列 java代码实现
定义抽象节点类Node: package cn.wzbrilliant.datastructure; /** * 节点 * @author ice * */ public abstract class ...
- 回归到最初的编程——Linux下的C编程
最近感觉有些浮躁,一方面感觉最近写公司的PHP代码倍感无聊,没有什么成就感!另一方面面对我的mac电脑中安装了诸多开发语言,倍感浮躁与困惑!同时想到这么多年来,却一直在使用PHP进行程序开发,总觉得有 ...