D. Sum of Medians
time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

In one well-known algorithm of finding the k-th order statistics we should divide all elements into groups of five consecutive elements and find the median of each five. A median is called the middle element of a sorted array (it's the third largest element for a group of five). To increase the algorithm's performance speed on a modern video card, you should be able to find a sum of medians in each five of the array.

A sum of medians of a sorted k-element set S = {a1, a2, ..., ak}, where a1 < a2 < a3 < ... < ak, will be understood by as

The  operator stands for taking the remainder, that is  stands for the remainder of dividing x by y.

To organize exercise testing quickly calculating the sum of medians for a changing set was needed.

Input

The first line contains number n (1 ≤ n ≤ 105), the number of operations performed.

Then each of n lines contains the description of one of the three operations:

  • add x — add the element x to the set;
  • del x — delete the element x from the set;
  • sum — find the sum of medians of the set.

For any add x operation it is true that the element x is not included in the set directly before the operation.

For any del x operation it is true that the element x is included in the set directly before the operation.

All the numbers in the input are positive integers, not exceeding 109.

Output

For each operation sum print on the single line the sum of medians of the current set. If the set is empty, print 0.

Please, do not use the %lld specificator to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams (also you may use the %I64d specificator).

Sample test(s)
input
6
add 4
add 5
add 1
add 2
add 3
sum
output
3
input
14
add 1
add 7
add 2
add 5
sum
add 6
add 8
add 9
add 3
add 4
add 10
sum
del 1
sum
output

5
11
13
-----------------------------------------------------------------------------------------------

Solution
用线段树维护集合
1.预处理所有add/del操作,将涉及的元素离散化为1...n
2.add x ,设x离散化为i,修改区间(i+1, n), 将各节点的sum[5]右移一位,再插入x
3.del x, 设x离散化为i, 修改区间(i+1, n), 将各节点的sum[5]左移一位, 在删除x
4.插入/删除元素需要知道元素在集合中的位置 (place),这由树状数组(BIT)维护。
5.对区间sum[5]的左移/右移操作需要用lazy-tag优化。
6.如果手写离散化,要注意实现细节。
7.需考虑极端输入,比如无sum询问的输入
---------------------------------------------------------------------------------------------
这是我第一发提交,TLE on test 5, 跪在极端输入上了,TLE的原因是调用了add(0, 1)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAX_N=1e5+;
#define X first
#define Y second
//BIT
int bit[MAX_N], rb;
int sum(int i){
int s=;
while(i){
s+=bit[i];
i-=i&-i;
}
return s;
}
void add(int i, int x){
while(i<=rb){
bit[i]+=x;
i+=i&-i;
}
} typedef pair<int, int> P;
P q[MAX_N];
int val[MAX_N];
char type[MAX_N][];
int lisan(int N){
int v;
for(int i=; i<N; i++){
scanf("%s", type[i]);
switch(*type[i]){
case 'a':
case 'd':
scanf("%d", &v);
q[i]=P(v, i);
break;
case 's':
q[i]=P(, i);  //TLE在这里
break;
}
}
sort(q, q+N);
int ord=;
for(int i=; i<N; ord++){
val[ord]=q[i].X;
do{
q[i].X=ord;
i++;
}while(i<N&&q[i].X==val[ord]);
}
return ord;
}
bool cmp(const P &a, const P &b){
return a.Y<b.Y;
}
//ST
struct node{
int l, r, tag;
ll sum[];
int mid(){return (l+r)>>;}
}T[MAX_N<<];
void shift(int id, int cnt){
cnt%=;
if(!cnt) return;
ll tmp[];
memcpy(tmp, T[id].sum, sizeof(tmp));
for(int i=; i<; i++){
int nt=(i+cnt+)%;
T[id].sum[nt]=tmp[i];
}
}
void pushdown(int id){
node &now=T[id], &lch=T[id<<], &rch=T[id<<|];
lch.tag+=now.tag, rch.tag+=now.tag;
shift(id<<, now.tag);
shift(id<<|, now.tag);
now.tag=; //error prone
}
void unite(int id){
node &now=T[id], &lch=T[id<<], &rch=T[id<<|];
for(int i=; i<; i++)
now.sum[i]=lch.sum[i]+rch.sum[i];
}
void build(int id, int l, int r){
node &now=T[id];
T[id].l=l, T[id].r=r, T[id].tag=;
memset(T[id].sum, , sizeof(T[id].sum));
if(l==r) return;
int mid=(l+r)>>;
build(id<<, l, mid);
build(id<<|, mid+, r);
}
void insert(int id, int pos, int ord, int v){
node &now=T[id];
if(now.l==now.r){
now.sum[ord%]+=v;
}
else{
pushdown(id);
if(pos<=now.mid())
insert(id<<, pos, ord, v);
else
insert(id<<|, pos, ord, v);
unite(id);
}
}
void shift(int id, int lb, int cnt){
if(lb>rb) return;
node &now=T[id];
if(now.l>=lb){
shift(id, cnt);
now.tag+=cnt;
}
else{
pushdown(id);
if(lb<=now.mid())
shift(id<<, lb, cnt);
shift(id<<|, lb, cnt);
unite(id);
}
} int main(){
//freopen("in", "r", stdin);
int N;
scanf("%d", &N);
rb=lisan(N);
build(, , rb);
sort(q, q+N, cmp);
for(int i=; i<N; i++){
if(*type[i]=='a'){
int ord=sum(q[i].X)+;
add(q[i].X, );
shift(, q[i].X+, );
insert(, q[i].X, ord, val[q[i].X]);
}
else if(*type[i]=='d'){
int ord=sum(q[i].X);
add(q[i].X, -);
shift(, q[i].X+, -);
insert(, q[i].X, ord, -val[q[i].X]);
}
else{
printf("%I64d\n", T[].sum[]);
}
}
return ;
}

其实我已经考虑到这种无sum询问的输入,但没注意到它会导致我的代码TLE

AC version

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAX_N=1e5+;
#define X first
#define Y second
//BIT
int bit[MAX_N], rb;
int sum(int i){
int s=;
while(i){
s+=bit[i];
i-=i&-i;
}
return s;
}
void add(int i, int x){
while(i<=rb){
bit[i]+=x;
i+=i&-i;
}
} typedef pair<int, int> P;
P q[MAX_N];
int val[MAX_N];
char type[MAX_N][];
int lisan(int N){
int v;
for(int i=; i<N; i++){
scanf("%s", type[i]);
switch(*type[i]){
case 'a':
case 'd':
scanf("%d", &v);
q[i]=P(v, i);
break;
case 's':
q[i]=P(INT_MAX, i);  //注意这里的改动
break;
}
}
sort(q, q+N);
int ord=;
for(int i=; i<N;){
++ord;
val[ord]=q[i].X;
do{
q[i].X=ord;
i++;
}while(i<N&&q[i].X==val[ord]);
}
return ord;
}
bool cmp(const P &a, const P &b){
return a.Y<b.Y;
}
//ST
struct node{
int l, r, tag;
ll sum[];
int mid(){return (l+r)>>;}
}T[MAX_N<<];
void shift(int id, int cnt){
cnt%=;
if(!cnt) return;
ll tmp[];
memcpy(tmp, T[id].sum, sizeof(tmp));
for(int i=; i<; i++){
int nt=(i+cnt+)%;
T[id].sum[nt]=tmp[i];
}
}
void pushdown(int id){
node &now=T[id], &lch=T[id<<], &rch=T[id<<|];
lch.tag+=now.tag, rch.tag+=now.tag;
shift(id<<, now.tag);
shift(id<<|, now.tag);
now.tag=; //error prone
}
void unite(int id){
node &now=T[id], &lch=T[id<<], &rch=T[id<<|];
for(int i=; i<; i++)
now.sum[i]=lch.sum[i]+rch.sum[i];
}
void build(int id, int l, int r){
node &now=T[id];
T[id].l=l, T[id].r=r, T[id].tag=;
memset(T[id].sum, , sizeof(T[id].sum));
if(l==r) return;
int mid=(l+r)>>;
build(id<<, l, mid);
build(id<<|, mid+, r);
}
void insert(int id, int pos, int ord, int v){
node &now=T[id];
if(now.l==now.r){
now.sum[ord%]+=v;
}
else{
pushdown(id);
if(pos<=now.mid())
insert(id<<, pos, ord, v);
else
insert(id<<|, pos, ord, v);
unite(id);
}
}
void shift(int id, int lb, int cnt){
if(lb>rb) return;
node &now=T[id];
if(now.l>=lb){
shift(id, cnt);
now.tag+=cnt;
}
else{
pushdown(id);
if(lb<=now.mid())
shift(id<<, lb, cnt);
shift(id<<|, lb, cnt);
unite(id);
}
} int main(){
//freopen("in", "r", stdin);
int N;
scanf("%d", &N);
rb=lisan(N);
build(, , rb);
sort(q, q+N, cmp);
for(int i=; i<N; i++){
if(*type[i]=='a'){
int ord=sum(q[i].X)+;
add(q[i].X, );
shift(, q[i].X+, );
insert(, q[i].X, ord, val[q[i].X]);
}
else if(*type[i]=='d'){
int ord=sum(q[i].X);
add(q[i].X, -);
shift(, q[i].X+, -);
insert(, q[i].X, ord, -val[q[i].X]);
}
else{
printf("%I64d\n", T[].sum[]);
}
}
return ;
}

Codeforces 85D Sum of Medians的更多相关文章

  1. Codeforces 85D Sum of Medians(线段树)

    题目链接:Codeforces 85D - Sum of Medians 题目大意:N个操作,add x:向集合中加入x:del x:删除集合中的x:sum:将集合排序后,将集合中全部下标i % 5 ...

  2. 数据结构(线段树):CodeForces 85D Sum of Medians

    D. Sum of Medians time limit per test 3 seconds memory limit per test 256 megabytes input standard i ...

  3. CodeForces 85D Sum of Medians Splay | 线段树

    Sum of Medians 题解: 对于这个题目,先想到是建立5棵Splay,然后每次更新把后面一段区间的树切下来,然后再转圈圈把切下来的树和别的树合并. 但是感觉写起来太麻烦就放弃了. 建立5棵线 ...

  4. 85D Sum of Medians

    传送门 题目 In one well-known algorithm of finding the k-th order statistics we should divide all element ...

  5. CF 85D Sum of Medians (五颗线段树)

    http://codeforces.com/problemset/problem/85/D 题意: 给你N(0<N<1e5)次操作,每次操作有3种方式, 1.向集合里加一个数a(0< ...

  6. codeforces 85D D. Sum of Medians Vector的妙用

    D. Sum of Medians Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/prob ...

  7. codeforces 85D D. Sum of Medians 线段树

    D. Sum of Medians time limit per test 3 seconds memory limit per test 256 megabytes input standard i ...

  8. Yandex.Algorithm 2011 Round 1 D. Sum of Medians 线段树

    题目链接: Sum of Medians Time Limit:3000MSMemory Limit:262144KB 问题描述 In one well-known algorithm of find ...

  9. Coderforces 85 D. Sum of Medians(线段树单点修改)

    D. Sum of Medians time limit per test 3 seconds memory limit per test 256 megabytes input standard i ...

随机推荐

  1. Oracle中没有 if exists(...)

    对于Oracle中没有 if exists(...) 的语法,目前有许多种解决方法,这里先分析常用的三种,推荐使用最后一种 第一种是最常用的,判断count(*)的值是否为零,如下declare  v ...

  2. zepto的tap事件的穿透分析

    首先是什么情况下会发生zepto(tap)的事件穿透: 当一个弹出层用tap点击之后这个层隐藏或者是移走,都会触发下面对应位置的点击事件(click)和一些标签的默认行为(a标签的跳转.input获取 ...

  3. 1017. A除以B (20)

    本题要求计算A/B,其中A是不超过1000位的正整数,B是1位正整数.你需要输出商数Q和余数R,使得A = B * Q + R成立. 输入格式: 输入在1行中依次给出A和B,中间以1空格分隔. 输出格 ...

  4. ibatis动态查询条件

    ibatis的调试相对困难,出错的时候主要依据是log4生成的log文件和出错提示,这方面要能比较熟练的看懂. 下面这个配置基本上包含了最复杂的功能:分页\搜索\排序\缓存\传值Hash表\返回has ...

  5. ASP.NET Web API身份验证和授权

    英语原文地址:http://www.asp.net/web-api/overview/security/authentication-and-authorization-in-aspnet-web-a ...

  6. 在WebApi中实现Cors访问

    Cors是个比较热的技术,这在蒋金楠的博客里也有体现,Cors简单来说就是“跨域资源访问”的意思,这种访问我们指的是Ajax实现的异步访问,形象点说就是,一个A网站公开一些接口方法,对于B网站和C网站 ...

  7. with(nolock)的用法

    with(nolock)的介绍 大家在写查询时,为了性能,往往会在表后面加一个nolock,或者是with(nolock),其目的就是查询是不锁定表,从而达到提高查询速度的目的. 当同一时间有多个用户 ...

  8. 在64位windows下使用instsrv.exe和srvany.exe创建windows服务

    在64位windows下使用instsrv.exe和srvany.exe创建windows服务   在32位的windows下,包括windows7,windows xp以及windows 2003, ...

  9. matlab绘制三维图形

    原文地址:种三维曲面图. 程序如下: [x,y]=meshgrid(-8:0.5:8); z=sin(sqrt(x.^2+y.^2))./sqrt(x.^2+y.^2+eps); subplot(2, ...

  10. Java系列:Collection.toArray用法研究

    该方法的签名如下: <T> T[] Collection.toArray(T[] arrayToFill); 这里想验证两个问题: 1)arrayToFill什么时候会被填充: 2)arr ...