DP/KMP/矩阵乘法


  好神的题啊……跪了跪了

  $n\leq 10^9$是什么鬼……我们还是先不要考虑这个鬼畜的玩意了>_>

  用类似数位DP的思路,我们可以想到一个DP方程:$f[i][j]$表示前 i 位数字,它的最后 j 位与不吉利串匹配的方案数,显然有$ans=\sum_{i=0}^x f[n][i]$

  然后就是转移的问题了= =那么依旧按照数位DP的想法(其实是硬扯到那的吧……怎么理解都可以,重点是明白转移方程)可以想到:从 i 转移到 i+1,有10种方案,其中一种会使得匹配长度+1,即$f[i+1][j+1]+=f[i][j]$那么其他的方案呢?并不都会使得匹配长度归0,想到这你大概已经想到了,对!就是KMP!字符串匹配时的fail指针!那么转移的方式就是这三种了= =:1.匹配长度归0;2.匹配长度+1;3.匹配长度变为fail[j]+1。

  那么转移方式已经确定啦~接下来就该考虑一下$n\leq 10^9$这个蛋疼的范围了……

  很明显这个范围O(n)是不可能的了= =必须要加速!那么我们来研究一下这个转移:我们可以把$f_i$看作一个向量:$$\begin{bmatrix} f_0 f_1 \cdots f_{m-1} \end{bmatrix}(即0\leq j\leq m-1) $$ 从$f_i$转移到$f_{i+1}$,其实是可以用一个矩阵来表示的: $$ \begin{bmatrix} f_0& f_1 &\cdots &f_{m-1} \end{bmatrix}_{i} * \begin{bmatrix} a_{0,0}& a_{0,1}& \cdots &a_{0,m-1} \\ a_{1,0}& a_{1,1}& \cdots &a_{1,m-1} \\  \ddots& \ddots& \vdots &\ddots \\ a_{m-1,0}& a_{m-1,1}& \cdots &a_{m-1,m-1} \end{bmatrix} = \begin{bmatrix} f_0 &f_1 &\cdots &f_{m-1} \end{bmatrix}_{i+1} $$

  嗯左边的表示$f[i][j]$,右边就是$f[i+1][j]$了;那么a矩阵是什么玩意呢?这是一个转移矩阵:$a[i][j]$表示从匹配了 i 个字符转移到匹配了 j 个字符有多少种方案!很明显当$j>0$的时候f[i][j]只可能是0或1,这里可能需要仔细理解一下,反正$f[i+1]$跟$f[i]$是线性相关的!所以我们可以直接利用矩阵乘法加速!

  嗯这道题我写的时候由于本题有【匹配长度为0】这个状态……然后KMP很久没写过了……果断跪啊,这题貌似是需要在原来的KMP上稍微改动一下,由于我KMP理解的不是很好所以蛋疼了很久……最后是看了Hzwer的写法才过的

 /**************************************************************
Problem: 1009
User: Tunix
Language: C++
Result: Accepted
Time:56 ms
Memory:812 kb
****************************************************************/ //BZOJ 1009
#include<cstdio>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
const int N=,INF=~0u>>;
/******************tamplate*********************/
int n,m,P;
struct Matrix{
int x[N][N];
int* operator [] (int a) {return x[a];}
Matrix(int a=){
rep(i,N) rep(j,N)
if (i==j) x[i][j]=a;
else x[i][j]=;
}
};
Matrix operator*(Matrix a,Matrix b){
Matrix c;
rep(i,m) rep(j,m) rep(k,m)
c[i][j]=(c[i][j]+a[i][k]*b[k][j])%P;
return c;
}
Matrix Pow(Matrix a,int b){
Matrix r();
for(;b;b>>=,a=a*a) if(b&) r=r*a;
return r;
}
/*******************Matrix**********************/
char s[];
Matrix f,a;
int next[];
void KMP(){
int j=;
F(i,,m){
while (j && s[i]!=s[j+]) j=next[j];
if (s[j+]==s[i]) j++;
next[i]=j;
}
rep(i,m)
rep(j,){
int x=i;
while(x && s[x+]-''!=j) x=next[x];
if (j==s[x+]-'') a[i][x+]++;
else a[i][]++;
}
}
int main(){
scanf("%d%d%d",&n,&m,&P);
scanf("%s",s+);
KMP();
f=Pow(a,n);
int ans=;
rep(i,m) ans+=f[][i],ans%=P;
printf("%d\n",ans);
return ;
}

1009: [HNOI2008]GT考试

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 2015  Solved: 1233
[Submit][Status][Discuss]

Description


申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字。他的不吉利数学
A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2...Am. A1和X1可以为0

Input

第一行输入N,M,K.接下来一行输入M位的数。 100%数据N<=10^9,M<=20,K<=1000 40%数据N<=1000 10%数据N<=6

Output

阿申想知道不出现不吉利数字的号码有多少种,输出模K取余的结果.

Sample Input

4 3 100
111

Sample Output

81

HINT

Source

[Submit][Status][Discuss]

【BZOJ】【1009】 【HNOI2008】GT考试的更多相关文章

  1. BZOJ 1009: [HNOI2008]GT考试( dp + 矩阵快速幂 + kmp )

    写了一个早上...就因为把长度为m的也算进去了... dp(i, j)表示准考证号前i个字符匹配了不吉利数字前j个的方案数. kmp预处理, 然后对于j进行枚举, 对数字0~9也枚举算出f(i, j) ...

  2. BZOJ 1009 [HNOI2008]GT考试 (KMP + 矩阵快速幂)

    1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4266  Solved: 2616[Submit][Statu ...

  3. bzoj 1009: [HNOI2008]GT考试 -- KMP+矩阵

    1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MB Description 阿申准备报名参加GT考试,准考证号为N位数X1X2.. ...

  4. [BZOJ 1009] [HNOI2008] GT考试 【AC自动机 + 矩阵乘法优化DP】

    题目链接:BZOJ - 1009 题目分析 题目要求求出不包含给定字符串的长度为 n 的字符串的数量. 既然这样,应该就是 KMP + DP ,用 f[i][j] 表示长度为 i ,匹配到模式串第 j ...

  5. bzoj 1009 [HNOI2008]GT考试(DP+KMP+矩阵乘法)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1009 [题意] 给定一个字符串T,问长度为n且不包含串T的字符串有多少种. [思路] ...

  6. BZOJ 1009: [HNOI2008]GT考试(kmp+dp+矩阵优化)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1009 题意: 思路:真的是好题啊! 对于这种题目,很有可能就是dp,$f[i][j]$表示分析到第 ...

  7. bzoj 1009 [HNOI2008]GT考试——kmp+矩阵优化dp

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 首先想到 确保模式串不出现 就是 确保每个位置的后缀不是该模式串. 为了dp,需要记录 ...

  8. 题解:BZOJ 1009 HNOI2008 GT考试 KMP + 矩阵

    原题描述: 阿申准备报名参加GT考试,准考证号为N位数 X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学A1A2...Am(0<=Ai&a ...

  9. bzoj 1009:[HNOI2008]GT考试

    这道题机房n多人好久之前就A了…… 我到现在才做出来…… 一看就是DP+矩阵乘法,但是一开始递推式推错了…… 正确的递推式应该是二维的…… f[i][j] 表示第准考证到第 i 位匹配了 j 位的方案 ...

  10. BZOJ 1009 HNOI2008 GT考试 KMP算法+矩阵乘法

    标题效果:给定的长度m数字字符串s.求不包括子s长度n数字串的数目 n<=10^9 看这个O(n)它与 我们不认为这 令f[i][j]长度i号码的最后的字符串j位和s前者j数字匹配方案 例如,当 ...

随机推荐

  1. 二分匹配之最大权值匹配算法---KM模板

    百科:http://baike.baidu.com/link?url=vbM3H4XmfrsWfP-epdlR2sVKSNzOq4hXnWDqm5uo8fd7VWsF2SmhDV35XyVUDvVjv ...

  2. VA助手(Visual Assist X) 笔记

    官方网站:http://www.wholetomato.com/ 一. 快捷键 Shift+Alt+F Find References 查找引用 Shift+Alt+S FindSynbolDialo ...

  3. ios app架构设计系统文章

    三. iOS应用架构谈(三):网络层设计方案(上) http://www.infoq.com/cn/articles/ios-app-arch-3-1?utm_source=infoq&utm ...

  4. IOS证书/私钥/代码签名/描述文件

    1.   相关资源 (1)   钥匙串程序(常用工具->钥匙串),用于创建证书请求.安装证书.导出私钥等 (2)   IOS开发中心:https://developer.apple.com/de ...

  5. 认识实验室信息管理系统(LIMS)

    在当今互联网如日中天的大环境下,各种伴随着互联网的产物如p2p,o2o在如火如荼的进行着,吸引了大量的开发人员都涌向了这个行业,所有的技术似乎都在围绕着互联网发展,传统行业软件开发的人气和关注度就相形 ...

  6. VS2010引用App_Code下的类文件问题解决方法

    原文连接:http://blog.csdn.net/zjlovety/article/details/7658528 VS2020中“添加ASP.NET文件夹”里没有App_Code,添加普通文件夹然 ...

  7. C#中的默认访问修饰符

    1.命名空间下的元素的默认访问修饰符 public : 同一程序集的其他任何代码或引用该程序集的其他程序集都可以访问该类型或成员.internal : 同一程序集中的任何代码都可以访问该类型或成员,但 ...

  8. JQuery 中 is(':visible') 解析及用法

    实例 选择 <body> 元素中每个可见的元素: $("body :visible") 亲自试一试 定义和用法 :visible 选择器选取每个当前是可见的元素. 除以 ...

  9. MySQL基础 - 外键和约束

    在工作中经常会遇到不少不同的观点,比如对于数据库来说那就是是否要设置外键,设置外键的理由自然不必多说,而不设置外键的理由多半为设置外键影响性能,但就目前工作来讲,还没有涉及到因为外键而引发的数据库瓶颈 ...

  10. 基于Html5的移动端开发框架的研究

    下面统计信息部分来自网络,不代表个人观点.请大家参考.         基于Html5移动端开发框架调查                                   序号 框架 简介 优点 缺 ...