SQL TUNNING
In a Nested Loops Join, for example, the first accessed table is called the outer table and the second one the inner table. In a Hash Join, the first accessed table is the build input and the second one the probe input.
Stream Aggregate and Merge Join, require data to be already sorted. To provide sorted data, the Query Optimizer may employ an existing index, or it may explicitly introduce a Sort operator.
hashing is used by the Hash Aggregate and Hash Join operators, both of which work by building a hash table in memory. The Hash Join operator uses memory only for the smaller of its two inputs, which is defined by the Query Optimizer.
Queries using an aggregate function and no GROUP BY clause are called
scalar aggregates, as they return a single value, and are always implemented by the Stream Aggregate operator.
Stream Aggregate operator is to aggregate values based on groups, its algorithm relies on the fact that its input is already sorted by the GROUP BY clause, and thus records from the same group are next to each other.
The Query Optimizer can select a Hash Aggregate for big tables where the data is not sorted, there is no need to sort it, and its cardinality estimates only a few groups.
The input shown at the top in a Nested Loops Join plan is known as the outer input and the one at the bottom is the inner input. The algorithm for the Nested Loops Join is very simple: the operator used to access the outer input is executed only once, and the operator used to access the inner input is executed once for every record that qualifies on the outer input.
the Query Optimizer is more likely to choose a Nested Loops Join when the outer input is small and the inner input has an index on the join key. This join type can be especially effective when the inner input is potentially large.
One difference between this and a Nested Loops Join is that, in a Merge Join, both input operators are executed only once. You can verify this by looking at the properties of
both operators, and you'll find that the number of executions is 1. Another difference is that a Merge Join requires an equality operator and its inputs sorted on the join predicate. In this example, the join predicate has an equality operator.
given the nature of the Merge Join, the Query Optimizer is more likely to choose this algorithm when faced with medium to large inputs, where there is an equality operator on the join predicate, and their inputs are sorted.
In the same way as the Merge Join, the Hash Join requires an equality operator on the
join predicate but, unlike the Merge Join, it does not require its inputs to be sorted. In addition, its operations in both inputs are executed only once, which you can verify by looking at the operator properties as shown before. However, a Hash Join works by
creating a hash table in memory. The Query Optimizer will use a cardinality estimation to detect the smaller of the two inputs, called the build input, and will use it to build a hash table in memory. If there is not enough memory to host the hash table, SQL Server can use disk space, creating a workfile in tempdb. A Hash Join will also block, but only during the time the build input is hashed. After the build input is hashed, the second table, called the probe input, will be read and compared to the hash table. If rows are matched they will be returned. On the execution plan, the table at the top will be used as the build input, and the table at the bottom as the probe input.
Finally, note that a behavior called "role reversal" may appear. If the Query Optimizer is not able to correctly estimate which of the two inputs is smaller, the build and probe roles may be reversed at execution time, and this will not be shown on the execution plan.
In summary, the Query Optimizer can choose a Hash Join for large inputs where there is an equality operator on the join predicate. Since both tables are scanned, the cost of a Hash Join is the sum of both inputs.
The SQL Server Query Optimizer is a cost-based optimizer, and therefore the quality of the execution plans it generates is directly related to the accuracy of its cost
estimations.
Statistics contain three major pieces of information: the histogram, the density information, and the string statistics, all of which help with different parts of the cardinality estimation process.
A cardinality estimate is the estimated number of records that will be returned by filtering, JOIN predicates or GROUP BY operations. Selectivity is a concept similar to cardinality estimation, which can be described as the percentage of rows from an input that satisfy a predicate.
Statistics are created in several ways: automatically by the Query Optimizer (if the default option to automatically create statistics, AUTO_CREATE_STATISTICS, is on); when an index is created; or when they are explicitly created, for example, by using the CREATE STATISTICS statement. Statistics can be created on one or more columns, and both the index and explicit creation methods support single- and multi-column statistics.
However, the statistics which are automatically generated by the Query Optimizer are always single-column statistics.
Both histograms and string statistics are created only for the first
column of a statistics object, the latter only if the column is of a string data type.
Density information is calculated for each set of columns forming a prefix in the statistics object.
The Query Optimizer always uses a sample of the target table when it creates or updates statistics, and the minimum sample size is 8 MB, or the size of the table if it's smaller than 8 MB. The sample size will increase for bigger tables, but it may still only be a small percentage of the table.
String statistics contain the data distribution for string columns, and can help to estimate the cardinality of queries with LIKE conditions.
Density information can be used to improve the Query Optimizer's estimates for GROUP BY operations.
GROUP BY queries can benefit from the estimated number of distinct values, and this information is already available in the density value.
In SQL Server, histograms are created only for the first column of a statistics object, and they compress the information of the distribution of values in those columns by partitioning that information into subsets called buckets or steps. The maximum number of steps in a histogram is 200, but even if the input has 200 or more unique values, a histogram may still have less than 200 steps.
The purpose of the Query Optimizer, as we're all aware, is to provide an optimum
execution plan and, in order to do so, it generates possible alternative execution plans through the use of transformation rules. These alternative plans are stored for the duration of the optimization process in a structure called the memo.
SQL TUNNING的更多相关文章
- creating indexing for SQL tunning
1. Not so long time ago, I got a report from customer. It's reported that they had a report getted v ...
- 为什么需要SQL Profile
为什么需要SQL Profile Why oracle need SQL Profiles,how it work and what are SQL Profiles... 使用DBMS_XPLAN. ...
- ORACLE SQL TUNING ADVISOR 使用方法
sql tunning advisor 使用的主要步骤: 1 建立tunning task 2 执行task 3 显示tunning 结果 4 根据建议来运行相应的调优方法 下面来按照这个顺序来实施 ...
- Performance Tunning - OCP
This artical is forcused on Oracle 11g Release 2. It is an summary from the OCP documentation. The ...
- advisor调优工具优化sql(基于sql_id)
advisor调优工具优化sql(基于sql_id) 问题背景:客户反馈数据库迁移后cpu负载激增,帮忙查看原因 解决思路:1> 查看问题系统发现有大量的latch: cache buffers ...
- Oracle-优化SQL语句
建议不使用(*)来代替所有列名 用truncate代替delete 在SQL*Plus环境中直接使用truncate table即可:要在PL/SQL中使用,如: 创建一个存储过程,实现使用trunc ...
- PLSQL_Oracle面试整理(汇总)
2014-08-16 Created By BaoXinjian
- Tuning 01 Overview of Oracle Performance Tuning
永无止境的调优 service level agreements: 是一个量化的调优的指标. performance 只要满足业务OK就可以了, 没必要调的很多, 因为有得必有失, 一方面调的特别优化 ...
- dbms_sqltune.report_sql_monitor 自动调优
--创建 dbms_sqltune.create_tuning_task ; --执行 dbms_sqltune.execute_tuning_task; --产看创建的task 和 status S ...
随机推荐
- 【转载】JS获取屏幕大小
前些日子需要给项目的弹窗上面罩,因为项目左侧是树形菜单,右侧嵌套的iframe ,iframe 的内容不是固定大小,那么,面罩的大小也就不是固定的 因此,用到了JQuery获取当前页面的窗口大小,于是 ...
- springmvc+mybatis+spring 整合
获取[下载地址] [免费支持更新]三大数据库 mysql oracle sqlsever 更专业.更强悍.适合不同用户群体[新录针对本系统的视频教程,手把手教开发一个模块,快速掌握本系统] ...
- Java正则表达式实用教程
java.util.regex是一个用正则表达式所订制的模式来对字符串进行匹配工作的类库包.java.util.regex包主要包括以下三个类:Pattern.Matcher和PatternSynta ...
- 在ALV中更新数据库表
FORM usercommand USING ucomm TYPE sy-ucomm selfield TYPE slis_selfield. DATA: lr_grid TYPE REF TO cl ...
- Snort - manual 笔记(二)
1.5 Packet Acquisition Snort 2.9 引入 DAQ 代替直接调用 libpcap . 有两种网卡特性会影响 Snort : "Large Receive Offl ...
- 复制转移sharepoint 2010 designer做的list workflow的方法
SharePoint 2010 designer做的workflow都有一个导出到visio的功能,但是如果是list workflow一般都是不可重用的,即使导出了,也是导不进目标站点或者list的 ...
- Android-Application
1:Application是什么? Application和Activity,Service一样,是android框架的一个系统组件,当android程序启动时系统会创建一个 application对 ...
- 简单认识UISwitch
以下是常用属性: self.mySwitch.layer.cornerRadius = 15; // 边框圆角角度 self.mySwitch.layer.borderWidth = 2; // ...
- javascript 自定义类型 属性,方法
<html> <head> <script type="text/javascript"> function member(name,gende ...
- XMLHttp小手册,原生ajax参考手册
个人做java ee开发,在一般的公司里上班,做的是一般的网站. 1.如果经常使用jquery等框架进行异步调用,最主要的不是了解jquery怎么用,而是了解http协议. 2.为了了解http协议, ...