尊重原创~~~

转载出处:http://www.matlabsky.com/thread-12411-1-1.html

交叉验证(Cross Validation)方法思想简介
http://www.matlabsky.com/forum-v ... -fromuid-18677.html

以下内容摘自《MATLAB 神经网络30个案例分析》第13章:

关于SVM参数的优化选取,国际上并没有公认统一的最好的方法,现在目前常用的方法就是让c和g在一定的范围内取值,对于取定的c和g对于把训练集作为原始数据集利用K-CV方法得到在此组c和g下训练集验证分类准确率,最终取使得训练集验证分类准确率最高的那组c和g做为最佳的参数,但有一个问题就是可能会有多组的c和g对应于最高的验证分类准确率,这种情况怎么处理?这里采用的手段是选取能够达到最高验证分类准确率中参数c最小的那组c和g做为最佳的参数,如果对应最小的c有多组g,就选取搜索到的第一组c和g做为最佳的参数。这样做的理由是:过高的c会导致过学习状态发生,即训练集分类准确率很高而测试集分类准确率很低(分类器的泛化能力降低),所以在能够达到最高验证分类准确率中的所有的成对的c和g中认为较小的惩罚参数c是更佳的选择对象。

以上的寻参思想在libsvm-mat-2.89-3[FarutoUltimate3.0]工具箱中已经实现SVMcgForClass.m (分类问题寻优)、SVMcgForRegress.m (回归问题参数寻优):

函数使用接口介绍如下:

网格参数寻优函数(分类问题):SVMcgForClass

[bestCVaccuracy,bestc,bestg]= SVMcgForClass(train_label,train,cmin,cmax,gmin,gmax,v,cstep,gstep,accstep)
输入:
train_label:训练集的标签,格式要求与svmtrain相同。
train:训练集,格式要求与svmtrain相同。
cmin,cmax:惩罚参数c的变化范围,即在[2^cmin,2^cmax]范围内寻找最佳的参数c,默认值为cmin=-8,cmax=8,即默认惩罚参数c的范围是[2^(-8),2^8]。
gmin,gmax:RBF核参数g的变化范围,即在[2^gmin,2^gmax]范围内寻找最佳的RBF核参数g,默认值为gmin=-8,gmax=8,即默认RBF核参数g的范围是[2^(-8),2^8]。
v:进行Cross Validation过程中的参数,即对训练集进行v-fold Cross Validation,默认为3,即默认进行3折CV过程。
cstep,gstep:进行参数寻优是c和g的步进大小,即c的取值为2^cmin,2^(cmin+cstep),…,2^cmax,,g的取值为2^gmin,2^(gmin+gstep),…,2^gmax,默认取值为cstep=1,gstep=1。
accstep:最后参数选择结果图中准确率离散化显示的步进间隔大小([0,100]之间的一个数),默认为4.5。
输出:
bestCVaccuracy:最终CV意义下的最佳分类准确率。
bestc:最佳的参数c。
bestg:最佳的参数g。

网格参数寻优函数(回归问题):SVMcgForRegress
[bestCVmse,bestc,bestg]= 
SVMcgForRegress(train_label,train,
cmin,cmax,gmin,gmax,v,cstep,gstep,msestep)
其输入输出与SVMcgForClass类似,这里不再赘述。

SVMcgForClass.m源代码:

function [bestacc,bestc,bestg] = SVMcgForClass(train_label,train,cmin,cmax,gmin,gmax,v,cstep,gstep,accstep)
%SVMcg cross validation by faruto

%%
% by faruto
%Email:patrick.lee@foxmail.com QQ:516667408 http://blog.sina.com.cn/faruto BNU
%last modified 2010.01.17

%% 若转载请注明:
% faruto and liyang , LIBSVM-farutoUltimateVersion
% a toolbox with implements for support vector machines based on libsvm, 2009.
%
% Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for
% support vector machines, 2001. Software available at
% http://www.csie.ntu.edu.tw/~cjlin/libsvm

%% about the parameters of SVMcg
if nargin < 10
accstep = 4.5;
end
if nargin < 8
cstep = 0.8;
gstep = 0.8;
end
if nargin < 7
v = 5;
end
if nargin < 5
gmax = 8;
gmin = -8;
end
if nargin < 3
cmax = 8;
cmin = -8;
end
%% X:c Y:g cg:CVaccuracy
[X,Y] = meshgrid(cmin:cstep:cmax,gmin:gstep:gmax);
[m,n] = size(X);
cg = zeros(m,n);

eps = 10^(-4);

%% record acc with different c & g,and find the bestacc with the smallest c
bestc = 1;
bestg = 0.1;
bestacc = 0;
basenum = 2;
for i = 1:m
for j = 1:n
cmd = ['-v ',num2str(v),' -c ',num2str( basenum^X(i,j) ),' -g ',num2str( basenum^Y(i,j) )];
cg(i,j) = svmtrain(train_label, train, cmd);

if cg(i,j) <= 55
continue;
end

if cg(i,j) > bestacc
bestacc = cg(i,j);
bestc = basenum^X(i,j);
bestg = basenum^Y(i,j);
end

if abs( cg(i,j)-bestacc )<=eps && bestc > basenum^X(i,j)
bestacc = cg(i,j);
bestc = basenum^X(i,j);
bestg = basenum^Y(i,j);
end

end
end
%% to draw the acc with different c & g
figure;
[C,h] = contour(X,Y,cg,70:accstep:100);
clabel(C,h,'Color','r');
xlabel('log2c','FontSize',12);
ylabel('log2g','FontSize',12);
firstline = 'SVC参数选择结果图(等高线图)[GridSearchMethod]';
secondline = ['Best c=',num2str(bestc),' g=',num2str(bestg), ...
' CVAccuracy=',num2str(bestacc),'%'];
title({firstline;secondline},'Fontsize',12);
grid on;

figure;
meshc(X,Y,cg);
% mesh(X,Y,cg);
% surf(X,Y,cg);
axis([cmin,cmax,gmin,gmax,30,100]);
xlabel('log2c','FontSize',12);
ylabel('log2g','FontSize',12);
zlabel('Accuracy(%)','FontSize',12);
firstline = 'SVC参数选择结果图(3D视图)[GridSearchMethod]';
secondline = ['Best c=',num2str(bestc),' g=',num2str(bestg), ...
' CVAccuracy=',num2str(bestacc),'%'];
title({firstline;secondline},'Fontsize',12);

您可以直接下载
libsvm-mat-2.89-3[FarutoUltimate3.0]
http://www.matlabsky.com/forum-v ... -fromuid-18677.html

进行使用

更多关于SVM的请看:
关于SVM的那点破事[长期更新整理 by faruto]
http://www.matlabsky.com/forum-v ... -fromuid-18677.html

paper 36 :[教程] 基于GridSearch的svm参数寻优的更多相关文章

  1. grid search 超参数寻优

    http://scikit-learn.org/stable/modules/grid_search.html 1. 超参数寻优方法 gridsearchCV 和  RandomizedSearchC ...

  2. 2021升级版微服务教程7-OpenFeign实战开发和参数调优

    2021升级版SpringCloud教程从入门到实战精通「H版&alibaba&链路追踪&日志&事务&锁」 教程全目录「含视频」:https://gitee.c ...

  3. paper 33 :[教程] 如何使用libsvm进行分类

    文章来源:http://www.matlabsky.com/thread-12379-1-1.html 这篇文章的讲解的真的是言简意赅,很简单的例子就把这个入门的门槛降低了不少,目前的情况是,我都晓得 ...

  4. 支持向量机SVM 参数选择

    http://ju.outofmemory.cn/entry/119152 http://www.cnblogs.com/zhizhan/p/4412343.html 支持向量机SVM是从线性可分情况 ...

  5. 数据挖掘入门系列教程(九)之基于sklearn的SVM使用

    目录 介绍 基于SVM对MINIST数据集进行分类 使用SVM SVM分析垃圾邮件 加载数据集 分词 构建词云 构建数据集 进行训练 交叉验证 炼丹术 总结 参考 介绍 在上一篇博客:数据挖掘入门系列 ...

  6. paper 32 :svm参数优化的进展

    从今天开始,我的微信公众号“天空之窗”就暂且停止更新内容了,专心搞研究!上午从师姐那儿淘到一份关于faruto讲解的Libsvm-FarutoUltimate3.1 based on libsvm-3 ...

  7. 机器学习经典算法详解及Python实现--基于SMO的SVM分类器

    原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector  ...

  8. OpenCV中的SVM参数优化

    OpenCV中的SVM参数优化 svm参数优化opencv SVMSVR参数优化CvSVMopencv CvSVM        SVM(支持向量机)是机器学习算法里用得最多的一种算法.SVM最常用的 ...

  9. Python实现鸢尾花数据集分类问题——基于skearn的SVM

    Python实现鸢尾花数据集分类问题——基于skearn的SVM 代码如下: # !/usr/bin/env python # encoding: utf-8 __author__ = 'Xiaoli ...

随机推荐

  1. percona

     三.      mysql安装 安装 Percona Server:vi /etc/yum.repos.d/Percona.repo[percona]name = CentOS $releaseve ...

  2. php--在apache上配制rewrite重写

    配置步骤: 第一步:找到apache的配置文件httpd.conf(文件在conf目录下) 第二步:你首先必须得让服务器支持mod_rewrite,如果你使用的是虚拟主机,请事先询问你的主机提供商. ...

  3. java简单优化和编写规范,自己总结的。

    1.永远不要比较两个浮点数是否相等.它是不安全的.详情google. 2.尽量使用StringBuffer代替String. 3.final类会提高很多效率. 4.try-catch 不应该用来控制程 ...

  4. Arcgis for JS之Cluster聚类分析的实现

    原文:Arcgis for JS之Cluster聚类分析的实现 在做项目的时候,碰见了这样一个问题:给地图上标注点对象,数据是从数据库来 的,包含XY坐标信息的,通过graphic和graphicla ...

  5. Linux-modules software

    简介 这里指的modules不是linux内核相关的module,只是用于软件多版本控制的一个开源软件包,比如说系统同时有neo4j的不同版本,使用modules软件就可以使得在需要的时候选择相应的软 ...

  6. 将Excel导入SQL Server 只能导入数字,其他数据变为NULL怎么解决?

    先新建一个TXT文件,把数据粘贴进去 再新建一个Excel文件,在菜单栏中选Data再选From Text 找到txt文件,点import 一定要选Text 点Finish,点OK. 接下来在往数据库 ...

  7. [收藏夹整理]OpenCV部分

    OpenCV中文论坛 OpenCV论坛 opencv视频教程目录(初级) OpenCV 教程 Opencv感想和一些分享 tornadomeet 超牛的大神 [数字图像处理]C++读取.旋转和保存bm ...

  8. iOS GCD简单使用

    Grand Central Dispatch (GCD) 1)运行在主线程的Main queue,通过dispatch_get_main_queue获取. /*!* @function dispatc ...

  9. Java Difference between Private and Protected

    Private means this could only be seen within this class. Protected means "package private" ...

  10. Fast and Robust Hand Tracking Using Detection-Guided Optimization

    http://handtracker.mpi-inf.mpg.de/projects/FastHandTracker/