Description

Given a big integer number, you are required to find out whether it's a prime number.

Input

The first line contains the number of test cases T (1 <= T <= 20 ), then the following T lines each contains an integer number N (2 <= N < 254).

Output

For each test case, if N is a prime number, output a line containing the word "Prime", otherwise, output a line containing the smallest prime factor of N.
 
题目大意:给一个数n,问是不是素数,若是输出Prime,若不是输出其最小的非1因子。
思路:http://www.2cto.com/kf/201310/249381.html
模板盗自:http://vfleaking.blog.163.com/blog/static/1748076342013231104455989/
 
代码(375MS):
 #include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <iterator>
#include <vector>
using namespace std; typedef long long LL; LL modplus(LL a, LL b, LL mod) {
LL res = a + b;
return res < mod ? res : res - mod;
} LL modminus(LL a, LL b, LL mod) {
LL res = a - b;
return res >= ? res : res + mod;
} LL mult(LL x, LL p, LL mod) {
LL res = ;
while(p) {
if(p & ) res = modplus(res, x, mod);
x = modplus(x, x, mod);
p >>= ;
}
return res;
} LL power(LL x, LL p, LL mod) {
LL res = ;
while(p) {
if(p & ) res = mult(res, x, mod);
x = mult(x, x, mod);
p >>= ;
}
return res;
} bool witness(LL n, LL p) {
int t = __builtin_ctz(n - );
LL x = power(p % n, (n - ) >> t, n), last;
while(t--) {
last = x, x = mult(x, x, n);
if(x == && last != && last != n - ) return false;
}
return x == ;
} const int prime_n = ;
int prime[prime_n] = {, , , , }; bool isPrime(LL n) {
if(n == ) return false;
if(find(prime, prime + prime_n, n) != prime + prime_n) return true;
if(n % == ) return false;
for(int i = ; i < prime_n; i++)
if(!witness(n, prime[i])) return false;
return true;
} LL getDivisor(LL n) {
int c = ;
while (true) {
int i = , k = ;
LL x1 = , x2 = ;
while(true) {
x1 = modplus(mult(x1, x1, n), c, n);
LL d = __gcd(modminus(x1, x2, n), n);
if(d != && d != n) return d;
if(x1 == x2) break;
i++;
if(i == k) x2 = x1, k <<= ;
}
c++;
}
} void getFactor(LL n, vector<LL> &ans) {
if(isPrime(n)) return ans.push_back(n);
LL d = getDivisor(n);
getFactor(d, ans);
getFactor(n / d, ans);
} int main() {
int T; LL n;
scanf("%d", &T);
while(scanf("%I64d", &n) != EOF) {
if(isPrime(n)) puts("Prime");
else {
vector<LL> ans;
getFactor(n, ans);
printf("%I64d\n", *min_element(ans.begin(), ans.end()));
}
}
}

POJ 1811 Prime Test(Miller-Rabin & Pollard-rho素数测试)的更多相关文章

  1. Miller_rabin算法+Pollard_rho算法 POJ 1811 Prime Test

    POJ 1811 Prime Test Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 32534   Accepted: 8 ...

  2. POJ 1811 Prime Test (Pollard rho 大整数分解)

    题意:给出一个N,若N为素数,输出Prime.若为合数,输出最小的素因子.思路:Pollard rho大整数分解,模板题 #include <iostream> #include < ...

  3. POJ1811- Prime Test(Miller–Rabin+Pollard's rho)

    题目大意 给你一个非常大的整数,判断它是不是素数,如果不是则输出它的最小的因子 题解 看了一整天<初等数论及其应用>相关部分,终于把Miller–Rabin和Pollard's rho这两 ...

  4. POJ2429 - GCD & LCM Inverse(Miller–Rabin+Pollard's rho)

    题目大意 给定两个数a,b的GCD和LCM,要求你求出a+b最小的a,b 题解 GCD(a,b)=G GCD(a/G,b/G)=1 LCM(a/G,b/G)=a/G*b/G=a*b/G^2=L/G 这 ...

  5. POJ 1811 Prime Test (Rabin-Miller强伪素数测试 和Pollard-rho 因数分解)

    题目链接 Description Given a big integer number, you are required to find out whether it's a prime numbe ...

  6. POJ 1811 Prime Test 素性测试 分解素因子

    题意: 给你一个数n(n <= 2^54),判断n是不是素数,如果是输出Prime,否则输出n最小的素因子 解题思路: 自然数素性测试可以看看Matrix67的  素数与素性测试 素因子分解利用 ...

  7. 数论 - Miller_Rabin素数测试 + pollard_rho算法分解质因数 ---- poj 1811 : Prime Test

    Prime Test Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 29046   Accepted: 7342 Case ...

  8. poj 1811 Prime Test 大数素数测试+大数因子分解

    Prime Test Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 27129   Accepted: 6713 Case ...

  9. POJ 1811 Prime Test( Pollard-rho整数分解经典题 )

    链接:传送门 题意:输入 n ,判断 n 是否为素数,如果是合数输出 n 的最素因子 思路:Pollard-rho经典题 /************************************** ...

  10. Miller&&Pollard POJ 1811 Prime Test

    题目传送门 题意:素性测试和大整数分解, N (2 <= N < 254). 分析:没啥好讲的,套个模板,POJ上C++提交 收获:写完这题得到模板 代码: /************** ...

随机推荐

  1. C#Form窗体通过代码改变尺寸

    通过Size属性不能得到正确的窗体尺寸, 怎么办? 还需要设置 MaximumSize 属性和你的 size属性尺寸一样. this.FormBorderStyle = FormBorderStyle ...

  2. nginx https

    默认情况下ssl模块并未被安装,如果要使用该模块则需要在编译时指定–with-http_ssl_module参数,安装模块依赖于OpenSSL库和一些引用文件,通常这些文件并不在同一个软件包中.通常这 ...

  3. php---文件上传分析

    文件上传: 先抄一段:预定义变量$_FILES数组有5个内容:       $_FILES['userfile']['name']——客户端机器文件的原名称       $_FILES['userfi ...

  4. Maven实战(三)Eclipse构建Maven项目

    1. 安装m2eclipse插件    要用Eclipse构建Maven项目,我们需要先安装meeclipse插件    点击eclipse菜单栏Help->Eclipse Marketplac ...

  5. C#中value是什么意思

    value是c#中的“属性”例如c#某个类中有一个成员变量(字段),为了安全性,外部如果要访问它,必须通过“属性”来访问:private int _id;//这是一个成员变量,private表示是私有 ...

  6. SQl中Left Join 、Right Join 、Inner Join与Ful Join

    1 left join 左外连接:查询结果以左表数据为准.假如左表有四条数据,右表有三条数据,则查询结果为四条,且都是左表中有的数据. 例如: EMP表: SAL表: 左连接 左连接,表EMP是主表, ...

  7. LeetCode Flip Game II

    原题链接在这里:https://leetcode.com/problems/flip-game-ii/ 题目: You are playing the following Flip Game with ...

  8. html5向左滑动删除特效

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  9. iOS: 讯飞语音的使用

    一.介绍: 讯飞语音做的相当不错,容错率达到90%多,如果需要做语音方面的功能,它绝对是一个不错的选择.讯飞语音的功能很多:语音听写.语音识别.语音合成等,但我们最常用的还是语音听写.讯飞语音中包含界 ...

  10. JavaScript: JavaScript的简介和入门代码演示

    1.Javascript的发展历史介绍: javascript是指的实在网页上编写的编程语言,其主要是控制器html的动态显示效果.HTMl能带来的只是一些基本的页面的风格,而要展示的漂亮使用CSS, ...