C. Binary Table

题目连接:

http://codeforces.com/problemset/problem/662/C

Description

You are given a table consisting of n rows and m columns. Each cell of the table contains either 0 or 1. In one move, you are allowed to pick any row or any column and invert all values, that is, replace 0 by 1 and vice versa.

What is the minimum number of cells with value 1 you can get after applying some number of operations?

Input

The first line of the input contains two integers n and m (1 ≤ n ≤ 20, 1 ≤ m ≤ 100 000) — the number of rows and the number of columns, respectively.

Then n lines follows with the descriptions of the rows. Each line has length m and contains only digits '0' and '1'.

Output

Output a single integer — the minimum possible number of ones you can get after applying some sequence of operations.

Sample Input

3 4

0110

1010

0111

Sample Output

2

Hint

题意

给你一个nm的01矩阵,然后每次操作:你可以挑选任意的某一行或者某一列翻转,然后你需要使得整个矩阵的1的数量尽可能少,问你最少数量是多少。

题解:

首先2^nm这个算法很简单:暴力枚举横着怎么翻转,然后每一列O(1)判断就好了。

然后正解怎么做呢?

我们令ans[i]是异或i之后的1的个数是多少,那么ans[i] = sigma(cnt[i]*num[i^j),cnt[i]表示列那个二进制为i的个数,num[i]表示二进制为i这个数的1的数量是多少。

这个很显然发现 i(ij) = i,这就是一个异或卷积的形式,用FWT加速计算就好了。

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = (1<<20)+6;
int n,m,cnt[maxn];
long long x1[maxn],x2[maxn],ans[maxn];
string s[maxn];
long long t[maxn];
void utfxor(long long a[], int n) {
if(n == 1) return;
int x = n >> 1;
for(int i = 0; i < x; ++ i) {
t[i] = (a[i] + a[i + x]) >> 1;
t[i + x] = (a[i + x] - a[i]) >> 1;
}
memcpy(a, t, n * sizeof(long long));
utfxor(a, x); utfxor(a + x, x);
} long long tmp[maxn]; void tfxor(long long a[], int n) {
if(n == 1) return;
int x = n >> 1;
tfxor(a, x); tfxor(a + x, x);
for(int i = 0; i < x; ++ i) {
tmp[i] = a[i] - a[i + x];
tmp[i + x] = a[i] + a[i + x];
}
memcpy(a, tmp, n * sizeof(long long));
} void solve(long long a[],long long b[],int n)
{
tfxor(a,n);
tfxor(b,n);
for(int i=0;i<n;i++) a[i]=1LL*a[i]*b[i];
utfxor(a,n);
} int main()
{
for(int i=0;i<maxn;i++){
int tmp = i;
while(tmp){
if(tmp&1)cnt[i]++;
tmp>>=1;
}
}
scanf("%d%d",&n,&m);
for(int i=0;i<n;i++)
cin>>s[i];
for(int i=0;i<m;i++){
int tmp = 0;
for(int j=0;j<n;j++){
if(s[j][i]=='1')tmp+=1<<j;
}
x1[tmp]++;
}
for(int i=0;i<(1<<n);i++)
x2[i]=min(cnt[i],n-cnt[i]);
solve(x1,x2,1<<n);
long long ans = 1e15;
for(int i=0;i<(1<<n);i++)
ans=min(ans,x1[i]);
cout<<ans<<endl;
}

CROC 2016 - Final Round [Private, For Onsite Finalists Only] C. Binary Table FWT的更多相关文章

  1. CROC 2016 - Elimination Round (Rated Unofficial Edition) D. Robot Rapping Results Report 二分+拓扑排序

    D. Robot Rapping Results Report 题目连接: http://www.codeforces.com/contest/655/problem/D Description Wh ...

  2. 8VC Venture Cup 2016 - Final Round (Div. 2 Edition)

    暴力 A - Orchestra import java.io.*; import java.util.*; public class Main { public static void main(S ...

  3. CROC 2016 - Elimination Round (Rated Unofficial Edition) D. Robot Rapping Results Report 拓扑排序+二分

    题目链接: http://www.codeforces.com/contest/655/problem/D 题意: 题目是要求前k个场次就能确定唯一的拓扑序,求满足条件的最小k. 题解: 二分k的取值 ...

  4. CF #CROC 2016 - Elimination Round D. Robot Rapping Results Report 二分+拓扑排序

    题目链接:http://codeforces.com/contest/655/problem/D 大意是给若干对偏序,问最少需要前多少对关系,可以确定所有的大小关系. 解法是二分答案,利用拓扑排序看是 ...

  5. 8VC Venture Cup 2016 - Final Round (Div. 1 Edition) E - Preorder Test 树形dp

    E - Preorder Test 思路:想到二分答案了之后就不难啦, 对于每个答案用树形dp取check, 如果二分的值是val, dp[ i ]表示 i 这棵子树答案不低于val的可以访问的 最多 ...

  6. CROC 2016 - Elimination Round (Rated Unofficial Edition) F - Cowslip Collections 数论 + 容斥

    F - Cowslip Collections http://codeforces.com/blog/entry/43868 这个题解讲的很好... #include<bits/stdc++.h ...

  7. CROC 2016 - Elimination Round (Rated Unofficial Edition) E - Intellectual Inquiry dp

    E - Intellectual Inquiry 思路:我自己YY了一个算本质不同子序列的方法, 发现和网上都不一样. 我们从每个点出发向其后面第一个a, b, c, d ...连一条边,那么总的不同 ...

  8. CROC 2016 - Elimination Round (Rated Unofficial Edition) E. Intellectual Inquiry 贪心 构造 dp

    E. Intellectual Inquiry 题目连接: http://www.codeforces.com/contest/655/problem/E Description After gett ...

  9. CROC 2016 - Elimination Round (Rated Unofficial Edition) C. Enduring Exodus 二分

    C. Enduring Exodus 题目连接: http://www.codeforces.com/contest/655/problem/C Description In an attempt t ...

随机推荐

  1. jquery实现checkbox的全选

    <html xmlns="http://www.w3.org/1999/xhtml"><head runat="server"> < ...

  2. cach

    为程序使用内存缓存(MemoryCache) oscache Guava cache 一种解决方法是配一个listener,在里面启动定时器. 简单缓存可以封装LinkedHashMap,因为它是有顺 ...

  3. json jackson

    1.引入依赖 <dependency> <groupId>com.fasterxml.jackson.core</groupId> <artifactId&g ...

  4. iOS设置UISearchBar光标的颜色

    [[UISearchBar appearance] setTintColor:[UIColor blackColor]];

  5. oracle每天清理归档日志

    http://langzhiwang888.iteye.com/blog/1675033 参考这里的内容 在数据库服务器上新建一个bat文件(文件名随意) 编辑此文件为: rman target 's ...

  6. [f]添加css3动画的方法

    添加css3的一些动画的属性 使用方法: css3(oDiv[0], 'scale', 300)('rotate', 300);css3(oDiv[0], 'animation', '"dd ...

  7. haskell中的cps

    cps全称叫continuation passing style,简要来讲就是告诉函数下一步做什么的递归方式,由于普通递归有栈溢出的问题,而cps都是尾递归(tail recursion),尾递归则是 ...

  8. 让IE支持placeholder属性~

    原文:https://www.oschina.net/code/snippet_206691_26471#44160 让支持的直接路过,不支持的,完美显示~~ /*  * jQuery placeho ...

  9. TypeScript 0.9.1 发布,新增 typeof 关键字

    TypeScript 0.9.1 发布了,该版本提升了编译器和语言的性能,增加新的语言特性 typeof ,更好的 this 处理等.详细介绍请看发行说明. TypeScript 是微软新推出的一种语 ...

  10. .NET Socket服务编程之-高效连接接入编

    在.NET上编写网络服务深入都有2,3年了,而这些时间时如何在.NET里实现网络服务积累了一些经验.在接下来的时间里会把这方面的经验通过博客的方式分享出来.而这一章主要是讲解在如果提高服务连接接入的效 ...