Eigenvectors and eigenvalues
http://setosa.io/ev/eigenvectors-and-eigenvalues/
Explained Visually
By Victor Powell and Lewis Lehe
Eigenvalues/vectors are instrumental to understanding electrical circuits, mechanical systems, ecology and even Google's PageRank algorithm.
Let's see if visualization can make these ideas more intuitive.
To begin, let v be
a 2-dimensional vector (shown as a point) and A be
a matrix with columns a1 and a2 (shown
as arrows). If we multiply v by A,
then A sends v to
a new vector Av.
If you can draw a line through (0,0), v and Av,
then Av is
just v multiplied
by a number λ;
that is, Av=λv.
In this case, we call λ an eigenvalue and v an eigenvector.
For example, here (1,2) is
an eigvector and 5 an
eigenvalue.
Below, change the bases of A and
drag v to
be its eigenvector. Note two facts: First, every point on the same line as an eigenvector is another eigenvector. That line is an eigenspace. Second, when λ<1, Av is
closer to (0,0) than v;
and when λ>1,
it's farther away.
What are eigenvalues/vectors good for?
Eigenvalues/vectors explain the behavior of systems that evolve step-by-step, where each step occurs as multiplication by a matrix A.
If you keep multiplying v by A,
you get a sequence v,Av,A2v, etc.
As you can see below, eigenspaces attract this sequence and draw it toward (0,0) or
farther away, depending on their eigenvalues.
Let's explore some applications and properties of these sequences.
Fibonacci Sequence
Suppose you have some amoebas in a petri dish. Every minute, all adult amoebas produce one child amoeba, and all child amoebas grow into adults (Note: this is not really how amoebas reproduce.). So if t is
a minute, the equation of this system is
which we can rewrite in matrix form like
Below, press "Forward" to step ahead a minute. The total population is the Fibonacci Sequence.
forward
As you can see, the system goes toward the grey line, which is an eigenspace with λ=(1+5√)/2>1.
Steady States
Suppose that, every year, a fraction p of
New Yorkers move to California and a fraction q of
Californians move to New York. Drag the circles to decide these fractions and the number starting in each state.
New YorkCalifornia1 − p = 0.7p = 0.3q = 0.11 − q = 0.938.33m19.65m
To understand the system better, we can start by writing it in matrix terms like:
Yorkt+1Californiat+1)==Avt(1−pqp1−q)⋅(New
YorktCaliforniat)
It turns out that a matrix like A,
whose rows add up to zero (try it!), is called a Markov matrix, and it always has λ=1 as
an eigenvalue. That means there's a value of vt for
which Avt=λvt=1vt=vt.
At this "steady state," the same number of people move in each direction, and the populations stay the same forever. Hover over the animation to see the system go to the steady state.
Complex eigenvalues
So far we've only looked at systems with real eigenvalues. But looking at the equation Av=λv,
who's to say λand v can't
have some imaginary part? That it can't be a complex number? For example,
Here, 1+i is
an eigenvalue and (1,i) is
an eigenvector.
If a matrix has complex eigenvalues, its sequence spirals around (0,0).
To see this, drag A's
columns (the arrows) around until you get a spiral. The eigenvalues are plotted in the real/imaginary plane to the right. You'll see that whenever the eigenvalues have an imaginary part, the system spirals, no matter where you start things off.
steps: -3-2-1123-3-2-1123-33-33-33-33realimrealimλ₀λ₁
Learning more
We've really only scratched the surface of what linear algebra is all about. To learn more, check out the legendary Gilbert Strang's Linear
Algebra course at MIT's Open Courseware site. To get more practice with applications of eigenvalues/vectors, also ceck out the excellent Differential
Equations course.
For more explanations, visit the Explained Visually project homepage.
Or subscribe to our mailing list
Eigenvectors and eigenvalues的更多相关文章
- A Beginner’s Guide to Eigenvectors, PCA, Covariance and Entropy
A Beginner’s Guide to Eigenvectors, PCA, Covariance and Entropy Content: Linear Transformations Prin ...
- <<Numerical Analysis>>笔记
2ed, by Timothy Sauer DEFINITION 1.3A solution is correct within p decimal places if the error is l ...
- opencv 61篇
(一)--安装配置.第一个程序 标签: imagebuildincludeinputpathcmd 2011-10-21 16:16 41132人阅读 评论(50) 收藏 举报 分类: OpenCV ...
- A geometric interpretation of the covariance matrix
A geometric interpretation of the covariance matrix Contents [hide] 1 Introduction 2 Eigendecomposit ...
- OpenCV LDA(Linnear Discriminant analysis)类的使用---OpenCV LDA演示样例
1.OpenCV中LDA类的声明 //contrib.hpp class CV_EXPORTS LDA { public: // Initializes a LDA with num_componen ...
- 三种方法实现PCA算法(Python)
主成分分析,即Principal Component Analysis(PCA),是多元统计中的重要内容,也广泛应用于机器学习和其它领域.它的主要作用是对高维数据进行降维.PCA把原先的n个特征用数目 ...
- Oja’s rule
目录 Oja's rule 背景 Hebbian learning 主要的一些理论 论文里面一些主要的假设 引理1 引理2 引理3 定理1 LEMMA 3(ALL) 引理 4 定理 2 定理 3(关于 ...
- <Numerical Analysis>(by Timothy Sauer) Notes
2ed, by Timothy Sauer DEFINITION 1.3A solution is correct within p decimal places if the error is l ...
- [BOOK] Applied Math and Machine Learning Basics
<Deep Learning> Ian Goodfellow Yoshua Bengio Aaron Courvill 关于此书Part One重难点的个人阅读笔记. 2.7 Eigend ...
随机推荐
- Linux内核
Linux内核配置.编译及Makefile简述 Hi,大家好!我是CrazyCatJack.最近在学习Linux内核的配置.编译及Makefile文件.今天总结一下学习成果,分享给大家^_^ 1.解压 ...
- C#基础系列:实现自己的ORM(反射以及Attribute在ORM中的应用)
反射以及Attribute在ORM中的应用 一. 反射什么是反射?简单点吧,反射就是在运行时动态获取对象信息的方法,比如运行时知道对象有哪些属性,方法,委托等等等等.反射有什么用呢?反射不但让你在运行 ...
- iBatis.Net(C#)数据库查询
引用请注明http://www.cnblogs.com/13590/archive/2013/03/14/2958735.html 摘要:查询是数据库SQL语言的核心,本文介绍了通过iBatis.N ...
- 【转】Python Twisted介绍
Python Twisted介绍 作者:Jessica McKellar 原文链接 Twisted是用Python实现的基于事件驱动的网络引擎框架.Twisted诞生于2000年初,在当时的网络游戏开 ...
- python中class 的一行式构造器
好处:避免类初始化时大量重复的赋值语句 用到了魔法__dict__ # 一行式构造器 class Test(): # 初始化 def __init__(self, a, b, c=2, d=3, e= ...
- [C#]動態叫用Web Service
http://www.dotblogs.com.tw/jimmyyu/archive/2009/04/22/8139.aspx 摘要 Web Service對大家來說想必都不陌生,也大都了解Web S ...
- 信息安全系统设计基础实验一 20135210&20135218
北京电子科技学院(BESTI) 实 验 报 告 课程: 密码系统设计基础 ...
- IOS开发之——登录加密也许用到的,反转字符串
- (NSString *)stringByReversed{// NSMutableString *s = [NSMutableString string];// for (NSUInt ...
- MBProgressHUD框架的使用:https://github.com/jdg/MBProgressHUD
MBProgressHUD是一个开源类库,实现了各种样式的提示框, 下载地址:https://github.com/jdg/MBProgressHUD,然后把两个MBProgressHUD.h和MBP ...
- canvas学习笔记:小小滴公式,大大滴乐趣
声明:本文为原创文章,如需转载,请注明来源WAxes,谢谢! 最近想弄一个网页,把自己学HTML5过程中做的部分DEMO放上去做集合,但是,如果就仅仅做个网页把所有DEMO一个一个排列又觉得太难看了. ...