http://setosa.io/ev/eigenvectors-and-eigenvalues/

Explained Visually

By Victor Powell and Lewis Lehe

Eigenvalues/vectors are instrumental to understanding electrical circuits, mechanical systems, ecology and even Google's PageRank algorithm.
Let's see if visualization can make these ideas more intuitive.

To begin, let v be
a 2-dimensional vector (shown as a point) and A be
a matrix with columns a1 and a2 (shown
as arrows). If we multiply v by A,
then A sends v to
a new vector Av.

012345012345xyva₁a₂Αv

Α
=
a₁,x
1.00
a₂,x
0.50
a₁,y
0.50
a₂,y
1.00
=
1.00
0.50
0.50
1.00
v
=
2.00
v, x
3.00
v, y
Αv
=
3.50
v, x
4.00
v, y

If you can draw a line through (0,0), v and Av,
then Av is
just v multiplied
by a number λ;
that is, Av=λv.
In this case, we call λ an eigenvalue and v an eigenvector.
For example, here (1,2) is
an eigvector and 5 an
eigenvalue.

Av=(1821)⋅(12)=5(12)=λv.

Below, change the bases of A and
drag v to
be its eigenvector. Note two facts: First, every point on the same line as an eigenvector is another eigenvector. That line is an eigenspace. Second, when λ<1, Av is
closer to (0,0) than v;
and when λ>1,
it's farther away.

012345012345xyva₁a₂Αvλ₁ = 1.5λ₂ = 0.5s₁s₂

What are eigenvalues/vectors good for?

Eigenvalues/vectors explain the behavior of systems that evolve step-by-step, where each step occurs as multiplication by a matrix A.
If you keep multiplying v by A,
you get a sequence v,Av,A2v, etc.
As you can see below, eigenspaces attract this sequence and draw it toward (0,0) or
farther away, depending on their eigenvalues.

02004006008001,00002004006008001,000xyvΑvΑ²va₁a₂λ₁ = 1.1λ₂ = 0.5s₁s₂

Let's explore some applications and properties of these sequences.

Fibonacci Sequence

Suppose you have some amoebas in a petri dish. Every minute, all adult amoebas produce one child amoeba, and all child amoebas grow into adults (Note: this is not really how amoebas reproduce.). So if t is
a minute, the equation of this system is

adultst+1childrent+1==adultst+childrentadultst

which we can rewrite in matrix form like

vt+1(adultst+1childrent+1)==A(1110)⋅⋅vt(adultstchildrent)

Below, press "Forward" to step ahead a minute. The total population is the Fibonacci Sequence.

childrenadults

012012v₀childrenadults
reset 
forward
1 child + 0 adults = 11123581321345589144233

As you can see, the system goes toward the grey line, which is an eigenspace with λ=(1+5√)/2>1.

Steady States

Suppose that, every year, a fraction p of
New Yorkers move to California and a fraction q of
Californians move to New York. Drag the circles to decide these fractions and the number starting in each state.

New YorkCalifornia1 − p = 0.7p = 0.3q = 0.11 − q = 0.938.33m19.65m

To understand the system better, we can start by writing it in matrix terms like:

vt+1(New
Yorkt+1Californiat+1)==Avt(1−pqp1−q)⋅(New
YorktCaliforniat)

It turns out that a matrix like A,
whose rows add up to zero (try it!), is called a Markov matrix, and it always has λ=1 as
an eigenvalue. That means there's a value of vt for
which Avt=λvt=1vt=vt.
At this "steady state," the same number of people move in each direction, and the populations stay the same forever. Hover over the animation to see the system go to the steady state.

90% stay70% stayHover over to play/restart0m10m20m30m40m50m0m10m20m30m40m50mCaliforniaNew Yorkv₀

Complex eigenvalues

So far we've only looked at systems with real eigenvalues. But looking at the equation Av=λv,
who's to say λand v can't
have some imaginary part? That it can't be a complex number? For example,

(1−111)⋅(1i)=(1+i)⋅(1i).

Here, 1+i is
an eigenvalue and (1,i) is
an eigenvector.

If a matrix has complex eigenvalues, its sequence spirals around (0,0).
To see this, drag A's
columns (the arrows) around until you get a spiral. The eigenvalues are plotted in the real/imaginary plane to the right. You'll see that whenever the eigenvalues have an imaginary part, the system spirals, no matter where you start things off.

steps: -3-2-1123-3-2-1123-33-33-33-33realimrealimλ₀λ₁

Learning more

We've really only scratched the surface of what linear algebra is all about. To learn more, check out the legendary Gilbert Strang's Linear
Algebra
 course at MIT's Open Courseware site. To get more practice with applications of eigenvalues/vectors, also ceck out the excellent Differential
Equations
 course.

For more explanations, visit the Explained Visually project homepage.

Or subscribe to our mailing list

Eigenvectors and eigenvalues的更多相关文章

  1. A Beginner’s Guide to Eigenvectors, PCA, Covariance and Entropy

    A Beginner’s Guide to Eigenvectors, PCA, Covariance and Entropy Content: Linear Transformations Prin ...

  2. <<Numerical Analysis>>笔记

    2ed,  by Timothy Sauer DEFINITION 1.3A solution is correct within p decimal places if the error is l ...

  3. opencv 61篇

    (一)--安装配置.第一个程序 标签: imagebuildincludeinputpathcmd 2011-10-21 16:16 41132人阅读 评论(50) 收藏 举报  分类: OpenCV ...

  4. A geometric interpretation of the covariance matrix

    A geometric interpretation of the covariance matrix Contents [hide] 1 Introduction 2 Eigendecomposit ...

  5. OpenCV LDA(Linnear Discriminant analysis)类的使用---OpenCV LDA演示样例

    1.OpenCV中LDA类的声明 //contrib.hpp class CV_EXPORTS LDA { public: // Initializes a LDA with num_componen ...

  6. 三种方法实现PCA算法(Python)

    主成分分析,即Principal Component Analysis(PCA),是多元统计中的重要内容,也广泛应用于机器学习和其它领域.它的主要作用是对高维数据进行降维.PCA把原先的n个特征用数目 ...

  7. Oja’s rule

    目录 Oja's rule 背景 Hebbian learning 主要的一些理论 论文里面一些主要的假设 引理1 引理2 引理3 定理1 LEMMA 3(ALL) 引理 4 定理 2 定理 3(关于 ...

  8. <Numerical Analysis>(by Timothy Sauer) Notes

    2ed,  by Timothy Sauer DEFINITION 1.3A solution is correct within p decimal places if the error is l ...

  9. [BOOK] Applied Math and Machine Learning Basics

    <Deep Learning> Ian Goodfellow Yoshua Bengio Aaron Courvill 关于此书Part One重难点的个人阅读笔记. 2.7 Eigend ...

随机推荐

  1. es2自动发现插件

    https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-multicast-usage.html http:// ...

  2. Restful是什么,SOAP Webservice和RESTful Webservice

    首先,应该怀着这样一种心态来学习Restful——Restful你可以将其理解一种软件架构风格,并且诠释了Http协议的设计初衷,所以不要把他理解的那么神秘,Restful风格有好处,当然也是有坏处的 ...

  3. php基础04:字符串函数

    <?php //1.strlen(),strlen() 函数返回字符串的长度,以字符计. echo strlen("hello world"); echo "< ...

  4. Ubuntu Navicat for MySQL安装以及破解方案

    今天发现Navicat for MySQL有LINUX版本了哈, 开心的说,首先上官网上下载LINUX版本: http://www.navicat.com/download 1. 下载 navicat ...

  5. [CareerCup] 2.2 Kth to Last Element of Linked List 链表的倒数第k个元素

    2.2 Implement an algorithm to find the kth to last element of a singly linked list. 这道题让我们求链表中倒数第k个元 ...

  6. 20145208 《Java程序设计》第9周学习总结

    20145208 <Java程序设计>第9周学习总结 教材学习内容总结 本周学习的内容有第十六周整合数据库,第十七章反射与类加载器,第十八章自定义泛型.枚举与注释. 在本周学习中,最大的难 ...

  7. openssl实践总结

    openssl实验总结 OPENSSL简介 OpenSSL项目是一个协作开发一个健壮的,商业级的,全功能的,并且开放源代码工具包,它实现了安全套接字层(SSL v2/v3)和传输层安全(TLS v1) ...

  8. 微信小程序剖析【下】:运行机制

    在上一篇<微信小程序「官方示例代码」浅析[上]>中,我们只是简单的罗列了一下代码,这一篇,让我们来玩点刺激的——就是看看IDE的代码,了解它是怎么运行的. 还好微信的开发团队在软件工程的实 ...

  9. 2、面向对象以及winform的简单运用(面向对象的四大基本特性)

    面向对象的四大基本特性 面向对象的核心概念就是封装.抽象.继承.多态这四大基本特性,在这里先解释一下它们的定义: 封装:是一种隐藏信息的特性.找到变化并且把它封装起来,你就可以在不影响其它部分的情况下 ...

  10. Maven 初学(一)基本概念

    Pom中有三个主要元素 Groupid,artifactid,version goupid 是一个组织唯一的标识  例如 com.ibm.www artifactid  是一个工程呢ID        ...