看上去不错的网站:http://iacs-courses.seas.harvard.edu/courses/am207/blog/lecture-18.html

SciPy Cookbookhttp://scipy-cookbook.readthedocs.io/items/KalmanFiltering.html


良心视频:卡尔曼滤波器的原理以及在matlab中的实现

讲解思路貌似是在已知迭代结果的基础上做讲解,不是很透彻。

1. 用矩阵表示

2. 本质就是:二维高斯的协方差与sampling效果

3. 不确定性在状态之间的传递

4. 矩阵表示观察数据

5. Kalman系数

6. 噪声协方差矩阵的更新

7. Matlab实现

思考: 

与数学领域 openBUGS 的估参的关系是什么?[Bayes] openBUGS: this is not the annoying bugs in programming

一个是对逐渐增多数据的实时预测;一个是对总体数据的回归拟合。

代码示例:纯python代码

# Kalman filter example demo in Python

# A Python implementation of the example given in pages 11-15 of "An
# Introduction to the Kalman Filter" by Greg Welch and Gary Bishop,
# University of North Carolina at Chapel Hill, Department of Computer
# Science, TR 95-041,
# http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html # by Andrew D. Straw import numpy as np
import matplotlib.pyplot as plt plt.rcParams['figure.figsize'] = (10, 8) # intial parameters
n_iter = 50
sz = (n_iter,) # size of array
x = -0.37727 # truth value (typo in example at top of p. 13 calls this z)
z = np.random.normal(x,0.1,size=sz) # observations (normal about x, sigma=0.1)
# 已获得一组随机数 Q = 1e-5 # process variance # allocate space for arrays
xhat =np.zeros(sz) # a posteri estimate of x
P =np.zeros(sz) # a posteri error estimate
xhatminus =np.zeros(sz) # a priori estimate of x
Pminus =np.zeros(sz) # a priori error estimate
K =np.zeros(sz) # gain or blending factor R = 0.1**2 # estimate of measurement variance, change to see effect # intial guesses
xhat[0] = 0.0
P[0] = 1.0

# 开始迭代
for k in range(1, n_iter):
# time update
xhatminus[k] = xhat[k-1]
Pminus[k] = P[k-1]+Q # measurement update
K[k] = Pminus[k]/( Pminus[k]+R )
xhat[k] = xhatminus[k]+K[k]*(z[k]-xhatminus[k])
P[k] = (1-K[k])*Pminus[k] plt.figure()
plt.plot(z,'k+',label='noisy measurements')
plt.plot(xhat,'b-',label='a posteri estimate')
plt.axhline(x,color='g',label='truth value')
plt.legend()
plt.title('Estimate vs. iteration step', fontweight='bold')
plt.xlabel('Iteration')
plt.ylabel('Voltage') plt.figure()
valid_iter = range(1,n_iter) # Pminus not valid at step 0
plt.plot(valid_iter,Pminus[valid_iter],label='a priori error estimate')
plt.title('Estimated $\it{\mathbf{a \ priori}}$ error vs. iteration step', fontweight='bold')
plt.xlabel('Iteration')
plt.ylabel('$(Voltage)^2$')
plt.setp(plt.gca(),'ylim',[0,.01])
plt.show()

Result: 

Goto: [OpenCV] Samples 14: kalman filter

其实,真正的Kalman Filter用得是如下理论,上述例子只是教小学生的入门读物。

Goto: https://www.youtube.com/watch?v=UVNeulkWWUM by XU Yida

关键需要理解: http://www.cnblogs.com/rubbninja/p/6220284.html

【重点】证明过程的理解关键是:

因为是线性滤波器,本身又具备一个alpha迭代的过程,那么先找出joint distribution,

然后,根据高斯的性质直接得出条件概率,即是Update Rule,这样正好对应于滤波器的alpha迭代过程的形式。

这个条件概率就是关于xt的,也就是最新的状态的概率分布,那么期望也就是miu,就是最新的xt

大概就是这么个思路,笔记在本本上,具体请看视频。符号比较多,但大体就是如上脉络。

[Math] Hidden Markov Model的更多相关文章

  1. [综]隐马尔可夫模型Hidden Markov Model (HMM)

    http://www.zhihu.com/question/20962240 Yang Eninala杜克大学 生物化学博士 线性代数 收录于 编辑推荐 •2216 人赞同 ×××××11月22日已更 ...

  2. 隐马尔可夫模型(Hidden Markov Model,HMM)

    介绍 崔晓源 翻译 我们通常都习惯寻找一个事物在一段时间里的变化规律.在很多领域我们都希望找到这个规律,比如计算机中的指令顺序,句子中的词顺序和语音中的词顺序等等.一个最适用的例子就是天气的预测. 首 ...

  3. 理论沉淀:隐马尔可夫模型(Hidden Markov Model, HMM)

    理论沉淀:隐马尔可夫模型(Hidden Markov Model, HMM) 参考链接:http://www.zhihu.com/question/20962240 参考链接:http://blog. ...

  4. Hidden Markov Model

    Markov Chain 马尔科夫链(Markov chain)是一个具有马氏性的随机过程,其时间和状态参数都是离散的.马尔科夫链可用于描述系统在状态空间中的各种状态之间的转移情况,其中下一个状态仅依 ...

  5. NLP —— 图模型(一)隐马尔可夫模型(Hidden Markov model,HMM)

    本文简单整理了以下内容: (一)贝叶斯网(Bayesian networks,有向图模型)简单回顾 (二)隐马尔可夫模型(Hidden Markov model,HMM) 写着写着还是写成了很规整的样 ...

  6. 隐马尔可夫模型(Hidden Markov Model)

    隐马尔可夫模型(Hidden Markov Model) 隐马尔可夫模型(Hidden Markov Model, HMM)是一个重要的机器学习模型.直观地说,它可以解决一类这样的问题:有某样事物存在 ...

  7. Speech Recognition Java Code - HMM VQ MFCC ( Hidden markov model, Vector Quantization and Mel Filter Cepstral Coefficient)

    Hi everyone,I have shared speech recognition code inhttps://github.com/gtiwari333/speech-recognition ...

  8. 隐马尔科夫模型 HMM(Hidden Markov Model)

    本科阶段学了三四遍的HMM,机器学习课,自然语言处理课,中文信息处理课:如今学研究生的自然语言处理,又碰见了这个老熟人: 虽多次碰到,但总觉得一知半解,对其了解不够全面,借着这次的机会,我想要直接搞定 ...

  9. 隐马尔科夫模型(hidden Markov Model)

    万事开头难啊,刚开头确实不知道该怎么写才能比较有水平,这篇博客可能会比较长,隐马尔科夫模型将会从以下几个方面进行叙述:1 隐马尔科夫模型的概率计算法  2 隐马尔科夫模型的学习算法 3 隐马尔科夫模型 ...

随机推荐

  1. Enterprise Solution 2.2 开发帮助文档集合

    首先是一个PPT文档,从宏观层面展示Enterprise Soltion的几个功能特色. Enterprise Solution解决方案安装与配置 将源代码解决方案和演示程序在电脑中进行配置,作为了解 ...

  2. Java 命名空间的由来和引入

    名字可视性(Name visibility) 名字管理对任何程序设计语言来说,都是一个重要问题.如果你在程序的某个模块里使用了 一个名字,而其他人在这个程序的另一个模块里也使用了相同的名字,那么怎样才 ...

  3. I2S (Inter—IC Sound) 总线

    I2S I2S(Inter—IC Sound)总线, 又称 集成电路内置音频总线,是飞利浦公司为数字音频设备之间的音频数据传输而制定的一种总线标准,该总线专责于音频设备之间的数据传输,广泛应用于各种多 ...

  4. java文件同步性能测试

    2003同步速度

  5. EF性能之关联加载

    鱼和熊掌不能兼得 ——中国谚语 一.介绍 Entity Framework作为一个优秀的ORM框架,它使得操作数据库就像操作内存中的数据一样,但是这种抽象是有性能代价的,故鱼和熊掌不能兼得.但是,通过 ...

  6. 转载:Cellebrite发布新版手机取证软件,增强调查能力

    2012-5-24 7:57:51  文章来源:文传商讯  作者:文传商讯 UFED 1.1.9.7版本为移动取证数据提取.编码和分析提供了先进的技术突破 新闻事实: Cellebrite发布其旗舰产 ...

  7. EF5.0增删改查的写法及执行Sql的方法

    public T AddEntity(T entity) { //EF4.0的写法 添加实体 //db.CreateObjectSet<T>().AddObject(entity); // ...

  8. Thinkpad X240使用U盘安装Win7系统

    更改BIOS设置 不同电脑的进入BIOS的方式可能不太一样,Thinkpad X240的进入方式是在电脑启动的时候按下回车键,然后按F1进入BIOS. 1. 修改secure boot为Disable ...

  9. 如何通过XShell传输文件

    转载孟光孟叔的博客:  https://learndevops.cn/index.php/2016/06/14/how-to-transfer-file-using-xshell xshell目前最好 ...

  10. 更新jar包中的MANIFEST.MF

    当前目录存在lib.jar和MANIFEST.MF文件,在当前目录下执行: jar -uvfm lib.jar MANIFEST.MF 如果lib.jar里存在META-INF/MANIFEST.MF ...