题面

CmdOI2019 口头禅

给 \(n\) 个 \(01\) 串 \(s_i\),\(m\) 个询问问 \(s_{l\sim r}\) 的最长公共子串长度。

数据范围:\(1\le n\le 20000\),\(1\le m\le 10^5\),\(\sum |s_i|\le 4\cdot 10^5\)。


蒟蒻语

蒟蒻看到这个题口胡了一个做法,然后轻松拿到了最优解,发现这是道大水题。

什么猫树或分治我没听说过,反正广义 SAM 上枚举子串乱搞 \(\Theta(n\sqrt n\log n)\) 跑得飞快。


蒟蒻解

首先把串建成广义 SAM 没有问题,为了方便我写了盗版的 /ch

离线询问,把 \([l_i,r_i]\) 这个询问挂到 \(r_i\) 上。

顺序枚举 \(r\),同时干这些坏事:

把 \(r_i=r\) 的询问按 \(l_i\) 排序,设有 \(qn\) 个询问。

对于 SAM 的节点 \(p\),维护 \(li_p\) 和 \(ri_p\),表示 \(s_{1\sim r}\) 中这个以这个节点为子串的最右连续区间。

维护方法是枚举 \(s_r\) 的所有子串(暴力跳每个前缀的 \(fa\),时间复杂度 \(\Theta(n\sqrt n)\)),通过 \(r-1\) 递推。

然后对于每个该串子串节点 \(p\),lower_bound 找到第一个 \(l_i\ge li_p\),对询问 \([i,qn]\) 的答案都与该节点代表最长串长度取 \(\max\)。

这东西根据单调性差分一下即可,然后就做完了。


代码

#include <bits/stdc++.h>
using namespace std; //Start
typedef long long ll;
typedef double db;
#define mp(a,b) make_pair((a),(b))
#define x first
#define y second
#define be(a) (a).begin()
#define en(a) (a).end()
#define sz(a) int((a).size())
#define pb(a) push_back(a)
#define R(i,a,b) for(int i=(a),I=(b);i<I;i++)
#define L(i,a,b) for(int i=(b)-1,I=(a)-1;i>I;i--)
const int iinf=0x3f3f3f3f;
const ll linf=0x3f3f3f3f3f3f3f3f; //Data
const int N=2e4,lN=4e5,qN=1e5;
int n,qn,ans[qN];
string s[N];
vector<pair<int,int>> que[N]; //SuffixAutoMoton
const int tN=(lN<<1)+1,cN=2;
int tn,ch[tN][cN],fa[tN],len[tN];
int newsam(){
fill(ch[tn],ch[tn]+cN,-1),fa[tn]=-1;
return tn++;
}
int rt=newsam(),t;
void extend(int c){
int p=t,np=t=newsam();
len[np]=len[p]+1;
for(;~p&&!~ch[p][c];p=fa[p]) ch[p][c]=np;
if(!~p) fa[np]=rt;
else {
int q=ch[p][c];
if(len[q]==len[p]+1) fa[np]=q;
else {
int nq=newsam();
copy(ch[q],ch[q]+cN,ch[nq]);
len[nq]=len[p]+1,fa[nq]=fa[q],fa[q]=fa[np]=nq;
for(;~p&&ch[p][c]==q;p=fa[p]) ch[p][c]=nq;
}
}
}
int li[tN],ri[tN],vis[tN]; //Main
int main(){
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
cin>>n>>qn;
R(i,0,n){
cin>>s[i],t=rt;
for(char c:s[i]) extend(c-'0');
}
R(i,0,qn){
int l,r; cin>>l>>r,--l,--r;
que[r].pb(mp(l,i));
}
fill(vis,vis+tn,-1);
fill(li,li+tn,-2),fill(ri,ri+tn,-2);
R(i,0,n){
sort(be(que[i]),en(que[i]));
vector<int> mx(sz(que[i])+1);
int p=rt,now=0;
for(char c:s[i]){
int q=p=ch[p][c-'0']; now++;
for(;~q&&vis[q]<i;q=fa[q]){
vis[q]=i;
if(ri[q]==i-1) ri[q]=i;
else li[q]=ri[q]=i;
int id=lower_bound(be(que[i]),en(que[i]),
mp(li[q],-1))-be(que[i]);
mx[id]=max(mx[id],min(len[q],now));
}
}
R(j,0,sz(que[i])) mx[j+1]=max(mx[j+1],mx[j]);
R(j,0,sz(que[i])) ans[que[i][j].y]=mx[j];
}
R(i,0,qn) cout<<ans[i]<<"\n";
return 0;
}

祝大家学习愉快!

题解-CmdOI2019 口头禅的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

随机推荐

  1. java服务器部署开源项目(若依)

    1准备工作 (1)阿里云 centos_8_0_x64_20G_alibase_20200218.vhd [root@iZ2zeeqw5fxmm9zagf439aZ ~]# cat /etc/redh ...

  2. Linux踩坑之云服务器 ssh 连接不上

    前奏:今天没事处理一下之前远程不了Linux桌面的问题时,找到一个解决方法(开始入坑):                     systemctl set-default graphical.tar ...

  3. Abbott的复仇(Abbott's Revenge)

    题目:有一个最多包含9*9个交叉点的迷宫.输入起点.离开起点时的朝向和终点,求一条最短路(多解时任意输出一个即可). 这个迷宫的特殊之处在于:进入一个交叉点的方向(用NEWS这4个字母分别表示北东西南 ...

  4. WeihanLi.Npoi 1.13.0 更新日志

    WeihanLi.Npoi 1.13.0 更新日志 Intro 在 Github 上收到 Issue 收到网友反馈希望支持自动分 Sheet 导出,有兴趣的可以参考 Issue https://git ...

  5. 干货 MySQL常见的面试题 + 索引原理分析

    常见的面试必备之MySQL索引底层原理分析: MySQL索引的本质 MySQL索引的底层原理 MySQL索引的实战经验 面试 1)问题:数据库中最常见的慢查询优化方式是什么? 回答:加索引 2)问题: ...

  6. python-验证码图片识别

    import tesserocr from PIL import Image #新建Image对象 image = Image.open('code.png') #调用tesserocr的image_ ...

  7. MathType如何对齐公式

    作为强大的公式编辑器,MathType为我们的学习.工作带来了极大的便利.比如在写论文时,有了它,就可以轻松就把论文里的公式码完:老师在编写试卷时,利用它,可以快速编写出一份试卷.那么在编写公式时,也 ...

  8. FL Studio 插件使用教程 —— 3x Osc(下)

    我们继续深入研究一下fl的3x Osc教程. 包络线是修饰音色非常重要的一个部件,有了它,音色不再是单调的长音,而能有长有短,有深有浅,变得丰富多彩.因此,学习包络线的运作原理很重要. 图1:包络线界 ...

  9. 思维导图软件iMindMap幻灯片设置功能介绍

    我们运用iMindMap演示来播放幻灯片时,有没想过,我怎么改动幻灯片的播放时长,怎么设置它的播放速度这些基本设置呢.下面,本文就告诉你,我们该去哪里修改这些iMindMap幻灯片设置: 我们打开iM ...

  10. MathType中怎么编辑韩文字符

    用MathType编辑公式,所涉及到符号与字母一般都是英文字母与数字,或者使用希腊字母,当然还有很多使用中文的情况.但是不仅如此,我们在使用MathType时,除了这些字符之外,还可以输入韩文或者日文 ...