\(
数据范围暗示状压,爪巴。 \\
首先考虑状态量。 \\
我们设计一个关于乐队数量的状态 S, 代表排列好的乐队。\\
\)

eg:

if(Set_排列好的队列 = {1, 2, 5})
then S = 010011

\(
设f[S]为S状态下排列好的最小代价 \\
s[i][j]为前i个位置有多少个j乐队成员 \\
num[j] 乐队j的人数\\
p.s. 以上三者都可以预处理\\
然后我们就可以得出一个结论:
对于第j个乐队
\)

\[f[S]=min(f[ S \ xor \ (1<<j) ]+num[j]−s[r][j]+s[l][j]
\]

\(其中num[j] - s[r][j] + s[l][j]是乐队j的花费\)

这么说来,倒是有一点背包的味道了。


#include <bits/stdc++.h>
#define LL long long
#define il inline
#define rg register
using namespace std;
int t, n, m;
const int maxn = 2e6 + 5;
const int maxs = 2e5 + 5;
il void chkmax(int &a, int b) {a = a > b ? a : b;}
il void chkmin(int &a, int b) {a = a < b ? a : b;}
il int read() {
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)) {
if(c == '-') f = -f;
c = getchar();
}
while(isdigit(c)) {
x = (x << 1) + (x << 3) + c - '0';
c = getchar();
}
return x * f;
}
il void write(int x) {
char c[33] = {0}, tot = 0;
if(x == 0) {puts("0"); return;}
while(x) {c[++ tot] = x % 10 + '0'; x /= 10;}
while(tot) {putchar(c[tot --]);}
return ;
} int f[maxn];
int s[maxs][30], num[30], sum[maxn];
il bool chk(int state, int d) {
return state & (1 << d - 1);
}
il void dfs(int x, int s, int d) {
if(x ^ m) {
if(d == 1) {
sum[s | (1 << x)] = sum[s] + num[x + 1];
dfs(x + 1, (s | (1 << x)), 1);
dfs(x + 1, (s | (1 << x)), 0);
} else {
dfs(x + 1, s, 1);
dfs(x + 1, s, 0);
}
}
}
int main() {
n = read(), m = read();
for(int i = 1, x;i <= n;i ++) {
x = read();
for(int j = 1;j <= m;j ++) {
s[i][j] = s[i - 1][j];
}
s[i][x] ++, num[x] ++;
}
dfs(0, 0, 0); dfs(0, 0, 1);
memset(f, 0x3f, sizeof(f));
f[0] = 0;
for(int i = 1;i < (1 << m);i ++) {
for(int j = 1;j <= m;j ++) {
int l = sum[i ^ (1 << j - 1)];
int r = sum[i];
if(chk(i, j)){
chkmin(f[i], f[i ^ (1 << j - 1)] + (r - l) - (s[r][j] - s[l][j]));
}
}
}
cout << f[(1 << m) - 1];
return 0;
}

P3694 邦邦的大合唱站队 题解的更多相关文章

  1. 状压DP 【洛谷P3694】 邦邦的大合唱站队

    [洛谷P3694] 邦邦的大合唱站队 题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶 ...

  2. 洛谷P3694 邦邦的大合唱站队/签到题

    P3694 邦邦的大合唱站队/签到题 题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶 ...

  3. P3694 邦邦的大合唱站队/签到题(状压dp)

    P3694 邦邦的大合唱站队/签到题 题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶 ...

  4. P3694 邦邦的大合唱站队 (状压DP)

    题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶像. 现在要求重新安排队列,使来自同一 ...

  5. P3694 邦邦的大合唱站队

    题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶像. 现在要求重新安排队列,使来自同一 ...

  6. 洛谷P3694 邦邦的大合唱站队【状压dp】

    状压dp 应用思想,找准状态,多考虑状态和\(f\)答案数组的维数(这个题主要就是找出来状态如何转移) 题目背景 \(BanG Dream!\)里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. ...

  7. Luogu P3694 邦邦的大合唱站队 【状压dp】By cellur925

    题目传送门 最开始学状压的时候...学长就讲的是这个题.当时对于刚好像明白互不侵犯和炮兵阵地的我来说好像在听天书.......因为我当时心里想,这又不是什么棋盘,咋状压啊?!后来发现这样的状压多了去了 ...

  8. *P3694 邦邦的大合唱站队[dp]

    题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶像. 现在要求重新安排队列,使来自同一乐队的偶像连续的站在一起.重新安排的办法是,让若干偶像出列(剩下的偶像不动),然后让出列的 ...

  9. 洛谷 P3694 邦邦的大合唱站队 状压DP

    题目描述 输入输出样例 输入 #1 复制 12 4 1 3 2 4 2 1 2 3 1 1 3 4 输出 #1 复制 7 说明/提示 分析 首先要注意合唱队排好队之后不一定是按\(1.2.3..... ...

随机推荐

  1. ctfshow 1024杯 部分web题解

    ------------恢复内容开始------------ 今年1024忙得厉害,去大上海参加geekpwn膜拜大佬,几家平台的题目没怎么好好看.特别是小破站的比赛拉跨的一批,bytectf的web ...

  2. pc和移动与ipad自适应布局的相关问题和解决

    一.通过CSS检测本机设备屏幕大小分配样式 1.最小尺寸分辨率1024*768(传统17寸显示器),则可以采用940px.960px.或者常用的980px作为最小宽度. ---- 在可视区域的宽度小于 ...

  3. 项目开发中的pro、pre、test、dev环境及SpringBoot多环境配置

    一.介绍: pro:生产环境,面向外部用户的环境,连接上互联网即可访问的正式环境. pre:灰度环境,外部用户可以访问,但是服务器配置相对低,其它和生产一样. test:测试环境,外部用户无法访问,专 ...

  4. ASP.NET Core Authentication系列(二)实现认证、登录和注销

    前言 在上一篇文章介绍ASP.NET Core Authentication的三个重要概念,分别是Claim, ClaimsIdentity, ClaimsPrincipal,以及claims-bas ...

  5. rs485通讯模块有什么作用

    rs485通讯模块是什么 rs485通讯模块我们可以分为几个部分来理解,rs485简单来说就是一个硬件,是一个物理接口.而这个接口要进行数据传输通讯,就需要采用网络协议和远端的服务器或者是其它网络设备 ...

  6. DP百题练(二)

    目录 DP百题练(二) 区间 DP NOI1995 石子合并 IOI1998 Polygon CH5302 金字塔 USACO06FEB Treats for the Cows G/S LG1043 ...

  7. RabbitMQ相关概念的理解

    1.什么是消息? 消息就是程序(服务)之间传递的数据(图/文/声/像). 2.MQ是什么? MQ(MessageQueue)是指消息队列亦或消息总线.是消息的容器,这个容器的策略是FIFO(先进先出) ...

  8. SQL2005数据库可疑的解决方法

    sqlserver数据库标注为可疑的解决办法 一般引起可疑的原因是突然断电,服务器死机,强制关机导致正在运行的数据库文件损坏,需要进行修复.方法一:USE MASTER GOSP_CONFIGURE ...

  9. 回顾MySql的一些基本的增删改查

    ---恢复内容开始--- 回顾数据库的一些简单的增删查改的操作语法与注意点,来自菜鸟教程https://www.runoob.com/mysql/mysql-tutorial.html 关于数据库的操 ...

  10. MSSQL 模糊搜索全文(过程、函数、触发器等)

    --SQL Server数据库查找含有某个关键字的存储过程.函数.触发器等 --SQL Server数据库查找含有某个关键字的存储过程,SQL语句如下: SELECT OBJECT_NAME(b.pa ...