P3694 邦邦的大合唱站队 题解
\(
数据范围暗示状压,爪巴。 \\
首先考虑状态量。 \\
我们设计一个关于乐队数量的状态 S, 代表排列好的乐队。\\
\)
eg:
if(Set_排列好的队列 = {1, 2, 5})
then S = 010011
\(
设f[S]为S状态下排列好的最小代价 \\
s[i][j]为前i个位置有多少个j乐队成员 \\
num[j] 乐队j的人数\\
p.s. 以上三者都可以预处理\\
然后我们就可以得出一个结论:
对于第j个乐队
\)
\]
\(其中num[j] - s[r][j] + s[l][j]是乐队j的花费\)
这么说来,倒是有一点背包的味道了。
#include <bits/stdc++.h>
#define LL long long
#define il inline
#define rg register
using namespace std;
int t, n, m;
const int maxn = 2e6 + 5;
const int maxs = 2e5 + 5;
il void chkmax(int &a, int b) {a = a > b ? a : b;}
il void chkmin(int &a, int b) {a = a < b ? a : b;}
il int read() {
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)) {
if(c == '-') f = -f;
c = getchar();
}
while(isdigit(c)) {
x = (x << 1) + (x << 3) + c - '0';
c = getchar();
}
return x * f;
}
il void write(int x) {
char c[33] = {0}, tot = 0;
if(x == 0) {puts("0"); return;}
while(x) {c[++ tot] = x % 10 + '0'; x /= 10;}
while(tot) {putchar(c[tot --]);}
return ;
}
int f[maxn];
int s[maxs][30], num[30], sum[maxn];
il bool chk(int state, int d) {
return state & (1 << d - 1);
}
il void dfs(int x, int s, int d) {
if(x ^ m) {
if(d == 1) {
sum[s | (1 << x)] = sum[s] + num[x + 1];
dfs(x + 1, (s | (1 << x)), 1);
dfs(x + 1, (s | (1 << x)), 0);
} else {
dfs(x + 1, s, 1);
dfs(x + 1, s, 0);
}
}
}
int main() {
n = read(), m = read();
for(int i = 1, x;i <= n;i ++) {
x = read();
for(int j = 1;j <= m;j ++) {
s[i][j] = s[i - 1][j];
}
s[i][x] ++, num[x] ++;
}
dfs(0, 0, 0); dfs(0, 0, 1);
memset(f, 0x3f, sizeof(f));
f[0] = 0;
for(int i = 1;i < (1 << m);i ++) {
for(int j = 1;j <= m;j ++) {
int l = sum[i ^ (1 << j - 1)];
int r = sum[i];
if(chk(i, j)){
chkmin(f[i], f[i ^ (1 << j - 1)] + (r - l) - (s[r][j] - s[l][j]));
}
}
}
cout << f[(1 << m) - 1];
return 0;
}
P3694 邦邦的大合唱站队 题解的更多相关文章
- 状压DP 【洛谷P3694】 邦邦的大合唱站队
[洛谷P3694] 邦邦的大合唱站队 题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶 ...
- 洛谷P3694 邦邦的大合唱站队/签到题
P3694 邦邦的大合唱站队/签到题 题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶 ...
- P3694 邦邦的大合唱站队/签到题(状压dp)
P3694 邦邦的大合唱站队/签到题 题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶 ...
- P3694 邦邦的大合唱站队 (状压DP)
题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶像. 现在要求重新安排队列,使来自同一 ...
- P3694 邦邦的大合唱站队
题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶像. 现在要求重新安排队列,使来自同一 ...
- 洛谷P3694 邦邦的大合唱站队【状压dp】
状压dp 应用思想,找准状态,多考虑状态和\(f\)答案数组的维数(这个题主要就是找出来状态如何转移) 题目背景 \(BanG Dream!\)里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. ...
- Luogu P3694 邦邦的大合唱站队 【状压dp】By cellur925
题目传送门 最开始学状压的时候...学长就讲的是这个题.当时对于刚好像明白互不侵犯和炮兵阵地的我来说好像在听天书.......因为我当时心里想,这又不是什么棋盘,咋状压啊?!后来发现这样的状压多了去了 ...
- *P3694 邦邦的大合唱站队[dp]
题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶像. 现在要求重新安排队列,使来自同一乐队的偶像连续的站在一起.重新安排的办法是,让若干偶像出列(剩下的偶像不动),然后让出列的 ...
- 洛谷 P3694 邦邦的大合唱站队 状压DP
题目描述 输入输出样例 输入 #1 复制 12 4 1 3 2 4 2 1 2 3 1 1 3 4 输出 #1 复制 7 说明/提示 分析 首先要注意合唱队排好队之后不一定是按\(1.2.3..... ...
随机推荐
- 开源!一款功能强大的高性能二进制序列化器Bssom.Net
好久没更新博客了,我开源了一款高性能的二进制序列化器Bssom.Net和新颖的二进制协议Bssom,欢迎大家Star,欢迎参与项目贡献! Net开源技术交流群 976304396,禁止水,只能讨论技术 ...
- E. Almost Regular Bracket Sequence 解析(思維)
Codeforce 1095 E. Almost Regular Bracket Sequence 解析(思維) 今天我們來看看CF1095E 題目連結 題目 給你一個括號序列,求有幾個字元改括號方向 ...
- 权值线段树&&可持久化线段树&&主席树
权值线段树 顾名思义,就是以权值为下标建立的线段树. 现在让我们来考虑考虑上面那句话的产生的三个小问题: 1. 如果说权值作为下标了,那这颗线段树里存什么呢? ----- 这颗线段树中, 记录每个值出 ...
- STM32入门系列-使用库函数点亮LED软硬件分析
电路图分析 首先找来单片机的原理图,根据原理图进行相关的设计工作. 例如在上图中相同网络标号表示它们是连接在一起的,因此D1发光二极管阴极是连接在STM32的PC0管脚上,D2指示灯阴极连接在PC1管 ...
- C#3新增语法特性
C#3,.Net Framework 3.5 ,Visual Studio 2008, CLR 3.0 C#3.0新引进的语法基于.Net Framework 3.5.主要引进的语法:Linq,隐式类 ...
- SpringCloud之Gateway
一.为什么选择SpringCloud Gateway而不是Zuul? Gateway和Zuul的职责一样,都承担着请求分发,类似Nginx分发到后端服务器. 1.SpingCloud Gateway ...
- Java_多线程实现
一个类两个接口 Tread类: 使用时继承Thread类 Runnable接口: 使用时实现Runnable接口 Callable接口: 使用时实现Callable接口 由于类只能单继承, 接口可以多 ...
- 14、Cookie和Session组件
cookie Cookie的由来 大家都知道HTTP协议是无状态的. 无状态的意思是每次请求都是独立的,它的执行情况和结果与前面的请求和之后的请求都无直接关系,它不会受前面的请求响应情况直接影响,也不 ...
- Java 中数组转换为 List
目录 1 - int 型数组转换为 List 2 - List 转换为 int 型数组 3 - String 型数组转换为 List 4 - List 转换为 String 型数组 版权声明 开发中经 ...
- Python--安装 PyQt5, pyqt5-tools
# 使用豆瓣镜像源 anaconda prompt界面里输入: pip install pyqt5-tools -i https://pypi.douban.com/simple/