GAN的理论 Theory behind GAN
接下来,先放结论: maximum likelihood estimation 就等价于 minimize KL Divergence
重要假设是,D(x) 可以是任意函数(NN拟合的理想情况),那么对于某一个 x ,都可以找一个 D(x) 令 V(G, D) 最大。V 对 D 求梯度后令其为0,得到极大值点 D(x) = P_data(x) / ( P_data(x) + P_G(x) )
再把 D* 代入 V(G, D) 中,就得到了 maxD V(G, D) = V(G, D*) 。然后把log里面的分母除以2,就能提出来两个 -log2
提出来常数项 -2log2 之后,可以发现后面剩下的部分就是两倍的JS散度。因为 JS散度定义为 JSD(P || Q) = KL(P || M) /2 = KL(Q || M) /2,其中 M = (P + Q) / 2
到这里就比较清楚了,接下来就要找一个 G ,最小化 JSD(P_data || P_G) 。举个例子,假设只有3个 G 可以选,那么先对每个固定的 G 找 V(G, D*),然后找一个 Gi 令 V(Gi, D*) 最小,下图所示显然应该选 G3。
对应 GAN 的训练过程,总结一下:
对于 G 的训练,就是要在固定刚才找到的最好的 D 之后,最小化 L(G, D)
这里有个疑问,L(G) 中有 max 函数,能够求梯度吗? —— 可以,分段求(回忆一下 maxout network)
还存在别的问题吗?
回顾一下整个 GAN 的训练流程和实际做法:
这里面还有个技巧,实际上训练 G 的目标函数可以不跟上面的公式一模一样,因为原来的式子会导致起始的时候梯度很小、更新的会很慢
实际的训练过程中,真的会导致 D 最后训练得如下图所示吗(完全不能做判别)?
我自己觉得不会。。。因为实际的训练不会这么理想,本身就有太多假设和近似在里面。
GAN 的一般框架:fGAN
如何把不同的 f-divergence 应用到 GAN 中。 f-divergence 的定义:
满足一些性质:当 p(x) = q(x),Df (P || Q) = 0;并且 Df (P || Q) >= 0
一些常见的 f-divergence 和对应的 f 函数:
任意一个凸函数 f 都有一个共轭函数 f*,满足
求解方式如下图所示,穷举所有的 x,所有的直线 xt-f(x) 求包络线就行了
回到 Df (P || Q) 的表达式,f 的自变量是 p(x) /q(x),代入。本来要穷举所有的 t 让后面的项最大,现在就找一个 D(更新 D 的参数),令 D(x) = t 使得后面的项最大。
其中,由于 D 的拟合能力有限,所以只能得到一个下界
所以,把积分写成对分布求期望
这就是把不同的 f-divergence 应用到 GAN 中的目标函数了
这样做是要解决什么问题? —— Mode Collapse、Mode Dropping
生成数据的模式太集中
Mode Collapse:
Mode Dropping:
这可能是散度的选择导致的,所以就多一些可能的 f-divergence 来选择,然后 ensemble 一下。(不过其实已经有更好的解决方案了)
GAN的理论 Theory behind GAN的更多相关文章
- GAN笔记——理论与实现
GAN这一概念是由Ian Goodfellow于2014年提出,并迅速成为了非常火热的研究话题,GAN的变种更是有上千种,深度学习先驱之一的Yann LeCun就曾说,"GAN及其变种是数十 ...
- GAN实战笔记——第一章GAN简介
GAN简介 一.什么是GAN GAN是一类由两个同时训练的模型组成的机器学习技术:一个是生成器,训练其生成伪数据:另一个是鉴别器,训练其从真实数据中识别伪数据. 生成(generative)一词预示着 ...
- (转) GAN论文整理
本文转自:http://www.jianshu.com/p/2acb804dd811 GAN论文整理 作者 FinlayLiu 已关注 2016.11.09 13:21 字数 1551 阅读 1263 ...
- 生成式对抗网络(GAN)学习笔记
图像识别和自然语言处理是目前应用极为广泛的AI技术,这些技术不管是速度还是准确度都已经达到了相当的高度,具体应用例如智能手机的人脸解锁.内置的语音助手.这些技术的实现和发展都离不开神经网络,可是传统的 ...
- [ZZ] Valse 2017 | 生成对抗网络(GAN)研究年度进展评述
Valse 2017 | 生成对抗网络(GAN)研究年度进展评述 https://www.leiphone.com/news/201704/fcG0rTSZWqgI31eY.html?viewType ...
- 深度学习新星:GAN的基本原理、应用和走向
深度学习新星:GAN的基本原理.应用和走向 (本文转自雷锋网,转载已获取授权,未经允许禁止转载)原文链接:http://www.leiphone.com/news/201701/Kq6FvnjgbKK ...
- [Deep-Learning-with-Python]GAN图片生成
GAN 由Goodfellow等人于2014年引入的生成对抗网络(GAN)是用于学习图像潜在空间的VAE的替代方案.它们通过强制生成的图像在统计上几乎与真实图像几乎无法区分,从而能够生成相当逼真的合成 ...
- Generative Adversarial Nets(原生GAN学习)
学习总结于国立台湾大学 :李宏毅老师 Author: Ian Goodfellow • Paper: https://arxiv.org/abs/1701.00160 • Video: https:/ ...
- [转]从头开始 GAN
1 前言 GAN的火爆想必大家都很清楚了,各种GAN像雨后春笋一样冒出来,大家也都可以名正言顺的说脏话了[微笑脸].虽然目前GAN的酷炫应用还集中在图像生成上,但是GAN也已经拓展到NLP,Robot ...
随机推荐
- Ambari 邮件监控服务
配置邮箱授权码 这里演示的是网易邮箱 开启SMTP服务 配置邮件模板 • 下载警告邮件模板 wget https://raw.githubusercontent.com/apache/ambari/b ...
- Three.js学习1_快速入门
快速上手, 搭建第一个3D场景 最重要的一步, 先下载three.js, 引入网页中 <script src="./three.js"></script> ...
- 单表千万行数据库 LIKE 搜索优化手记
我们经常在数据库中使用 LIKE 操作符来完成对数据的模糊搜索,LIKE 操作符用于在 WHERE 子句中搜索列中的指定模式. 如果需要查找客户表中所有姓氏是“张”的数据,可以使用下面的 SQL 语句 ...
- 【pytest】(三) pytest运行多个文件
1.运行多个测试文件 pytest 会运行 test_ 开头 或者 _test 结尾的文件,在当前目录和子目录中 2. 一个类下的多个用例的运行, pytest会找到 test_ 开头的方法 impo ...
- Docker 搭建 Redis Cluster 集群环境
使用 Docker 搭建 Redis Cluster,最重要的环节就是容器通信的问题,这一块我们在之前的文章中已经给大家解决了<Docker 网络模式详解及容器间网络通信>,本篇文章主要练 ...
- 安装和配置SQL
安装和配置SQL 在终端输入 npm i mysql命令安装SQL(加上-g全局安装) 配置SQL // 1.导入mysql模块 const mysql = require("mysql&q ...
- Wampserver报错、橙色、mysql打不开
Wampserver下的几个常见的问题 最近在弄Wampserver,发现有几个问题存留在这里,今天就来解决一下吧 首先就是关于报错的这个一个问题: 第二就是关于一直不变绿的原因 关于报错: 在我的电 ...
- 开发一个渐进式Web应用程序(PWA)前都需要了解什么?
转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具.解决方案和服务,赋能开发者. 原文出处:https://dzone.com/articles/how-to-build-a-progres ...
- python基础:异常捕捉
一.异常 python在程序运行过程中,可能会出现一些错误和异常,导致程序停止运行.我们可以通过捕捉异常,并对异常进行处理,使得程序可以正常运行 异常有很多类型,可以根据类型挨个捕捉.也可统一捕获: ...
- VMware安装Centos7并联网使用
一.安装VMware VMwareworkstation官方下载地址: https://www.vmware.com/cn/products/workstation-pro/workstation-p ...