Description

Mirko is playing with stacks. In the beginning of the game, he has an empty stack denoted with number 0. In the

ith step of the game he will choose an existing stack denoted with v, copy it and do one of the following actions:

a. place number i on top of the new stack

b. remove the number from the top of the new stack

c. choose another stack denoted with w and count how many different numbers exist that are in the new stack

and in the stack denoted with w

The newly created stack is denoted with i.

Mirko doesn’t like to work with stacks so he wants you to write a programme that will do it for him. For each

operation of type b output the number removed from stack and for each operation of type c count the required

numbers and output how many of them there are.

Input

The first line of input contains the integer N (1 <= N <= 300000), the number of steps in Mirko’s game.

The steps of the game are chronologically denoted with the first N integers.

The ith of the following N lines contains the description of the ith step of the game in one of the following three

forms:

"a v" for operation of type a.

"b v" for operation of type b.

"c v w" for operation of type c.

The first character in the line denotes the type of operation and the following one or two denote the accompanying

stack labels that will always be integers from the interval [0,i-1].

For each operation of type b, the stack we’re removing the element from will not be empty.

Output

For each operation type b or c output the required number, each in their own line, in the order the operations

were given in the input.

Sample Input


5
a 0
a 1
b 2
c 2 3
b 4
11
a 0
a 1
a 2
a 3
a 2
c 4 5
a 5
a 6
c 8 7
b 8
b 8

Sample Output


2
1
2
2
2
8
8

Hint

In the beginning, we have the stack S0 = {}. In the first step, we copy S0 and place

number 1 on top, so S1 = {1}. In the second step, we copy S1 and place 2 on top of it, S2 = {1,2}. In the third step we

copy S2 and remove number 2 from it, S3 = {1}. In the fourth step we copy S2 and denote the copy with S4, then count

the numbers appearing in the newly created stack S4 and stack S3, the only such number is number 1 so the solution is 1.

In the fifth step we copy S4 and remove number 2 from it, S5 = {1}.

题意:一开始给你一个空栈,有3个操作。1.a v:先把编号为v的栈复制,然后在栈顶上放i 2.b v:先把编号为v的栈复制,然后去掉栈顶元素 3.c v w:先把编号为v的栈复制,然后数出同时存在于v,w栈的数的个数。开一个二叉树,如果是a操作,那么加入新的节点,如果是b操作,那么找到v的父节点,如果是c操作,那么全部输入读入后,求一个lca。

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
#define maxn 300005
vector<int>vec[maxn];
vector<int>::iterator it;
struct node{
int x,y;
}c[maxn]; int jd[maxn],fa[maxn],f[maxn][25],dep[maxn],ans[maxn],daibiao[maxn],vis[maxn],siz[maxn]; int lca(int x,int y){
int i;
if(dep[x]<dep[y]){
swap(x,y);
}
for(i=20;i>=0;i--){
if(dep[f[x][i] ]>=dep[y]){
x=f[x][i];
}
}
if(x==y)return x;
for(i=20;i>=0;i--){
if(f[x][i]!=f[y][i]){
x=f[x][i];y=f[y][i];
}
}
return f[x][0];
} int main()
{
int n,m,i,j,x,jiedian,jiedian1,y,k;
char s[10];
while(scanf("%d",&m)!=EOF)
{
jd[1]=1;
for(i=1;i<=m+1;i++)vec[i].clear();
int t=1;
daibiao[1]=1;
dep[1]=1;
for(i=2;i<=m+1;i++){
scanf("%s%d",s,&x);x++;
jiedian=jd[x];
if(s[0]=='a'){
t++;
dep[t]=dep[jiedian]+1;
jd[i]=t;
f[t][0]=jiedian;
daibiao[t]=i;
c[i].x=c[i].y=-2;
}
else if(s[0]=='b'){
ans[i]=daibiao[jiedian];
jiedian1=f[jiedian][0];
jd[i]=jiedian1;
c[i].x=c[i].y=-1;
}
else if(s[0]=='c'){
scanf("%d",&y);y++;
jd[i]=jiedian;
c[i].x=jd[i];c[i].y=jd[y];
}
}
for(k=1;k<=20;k++){
for(i=1;i<=m+1;i++){
f[i][k]=f[f[i][k-1]][k-1];
}
}
for(i=2;i<=m+1;i++){
if(c[i].x==-2)continue;
if(c[i].x==-1){
printf("%d\n",ans[i]-1);
}
else{
int gong=lca(c[i].x,c[i].y );
printf("%d\n",dep[gong]-1); }
}
}
return 0;
}

zjnu1726 STOGOVI (lca)的更多相关文章

  1. BZOJ 3083: 遥远的国度 [树链剖分 DFS序 LCA]

    3083: 遥远的国度 Time Limit: 10 Sec  Memory Limit: 1280 MBSubmit: 3127  Solved: 795[Submit][Status][Discu ...

  2. BZOJ 3626: [LNOI2014]LCA [树链剖分 离线|主席树]

    3626: [LNOI2014]LCA Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2050  Solved: 817[Submit][Status ...

  3. [bzoj3123][sdoi2013森林] (树上主席树+lca+并查集启发式合并+暴力重构森林)

    Description Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数 ...

  4. [bzoj2588][count on a tree] (主席树+lca)

    Description 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始 ...

  5. [板子]倍增LCA

    倍增LCA板子,没有压行,可读性应该还可以.转载请随意. #include <cstdio> #include <cstring> #include <algorithm ...

  6. poj3417 LCA + 树形dp

    Network Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4478   Accepted: 1292 Descripti ...

  7. [bzoj3626][LNOI2014]LCA

    Description 给出一个$n$个节点的有根树(编号为$0$到$n-1$,根节点为$0$). 一个点的深度定义为这个节点到根的距离$+1$. 设$dep[i]$表示点$i$的深度,$lca(i, ...

  8. (RMQ版)LCA注意要点

    inline int lca(int x,int y){ if(x>y) swap(x,y); ]][x]]<h[rmq[log[y-x+]][y-near[y-x+]+]])? rmq[ ...

  9. bzoj3631: [JLOI2014]松鼠的新家(LCA+差分)

    题目大意:一棵树,以一定顺序走完n个点,求每个点经过多少遍 可以树链剖分,也可以直接在树上做差分序列的标记 后者打起来更舒适一点.. 具体实现: 先求x,y的lca,且dep[x]<dep[y] ...

随机推荐

  1. 详解线程池的作用及Java中如何使用线程池

    服务端应用程序(如数据库和 Web 服务器)需要处理来自客户端的高并发.耗时较短的请求任务,所以频繁的创建处理这些请求的所需要的线程就是一个非常消耗资源的操作.常规的方法是针对一个新的请求创建一个新线 ...

  2. python -c 妙用

    前言 python -c 命令还是有用的哈 正文 python的 -c 可以在命令行中调用 python 代码, 实际上 -c 就是 command 的意思 官方文档中解释为(节选自: python ...

  3. 【Python】简单的脚本,轻松批量修改文件名称

    使用python脚本,批量修改文件夹名称 先创建一些没用的案例文件 import os #创建新文件夹 dir = os.makedirs('D:\\SomeThing\\testfile') #将文 ...

  4. 【Linux】扩大swap分区

    今天安装oracle的时候,提示我swap分区过小.需要最少3g以上 但是安装系统了,想要扩大swap分区怎么办呢 下面来介绍如何扩大swap分区 按步骤介绍 Red Hat linux 如何增加sw ...

  5. 【老孟Flutter】源码分析系列之InheritedWidget

    老孟导读:这是2021年源码系列的第一篇文章,其实源码系列的文章不是特别受欢迎,一个原因是原理性的知识非常枯燥,我自己看源码的时候特别有感触,二是想把源码分析讲的通俗易懂非常困难,自己明白 和 让别人 ...

  6. 前端开发好帮手,eslint配置全知道

    eslint让人又爱又恨,原因在于它的默认配置非常严格,动则一个小提示就直接报错不给运行.而在开发调试的过程中,我们想时时得到运行效果,它的严格又很烦. 在安装eslint后,我们可以在package ...

  7. git 基本命令和操作

    设置全局用户名+密码 $ git config --global user.name 'runoob' $ git config --global user.email test@runoob.com ...

  8. Linux 安装分区设置分区大小

    一.Linux分区挂载点介绍 Linux分区挂载点介绍,推荐容量仅供参考不是绝对,跟各系统用途以及硬盘空间配额等因素实际调整: 分区类型 介绍 备注 /boot 启动分区 一般设置100M-200M, ...

  9. Docker逃逸

    初识Docker逃逸 - FreeBuf网络安全行业门户 https://www.freebuf.com/articles/container/242763.html

  10. pywin32 pywin32 docx文档转html页面 word doc docx 提取文字 图片 html 结构

    https://blog.csdn.net/X21214054/article/details/78873338# python docx文档转html页面 - 程序猿tx - 博客园 https:/ ...