题目:

Cao Cao made up a big army and was going to invade the whole South China. Yu Zhou was worried about it. He thought the only way to beat Cao Cao is to have a spy in Cao Cao's army. But all generals and soldiers of Cao Cao were loyal, it's impossible to convince any of them to betray Cao Cao. 

So there is only one way left for Yu Zhou, send someone to fake surrender Cao Cao. Gai Huang was selected for this important mission. However, Cao Cao was not easy to believe others, so Gai Huang must leak some important information to Cao Cao before surrendering. 

Yu Zhou discussed with Gai Huang and worked out NN information to be leaked, in happening order. Each of the information was estimated to has aiai value in Cao Cao's opinion. 

Actually, if you leak information with strict increasing value could accelerate making Cao Cao believe you. So Gai Huang decided to leak exact MM information with strict increasing value in happening order. In other words, Gai Huang will not change the order of the NN information and just select MM of them. Find out how many ways Gai Huang could do this.


InputThe first line of the input gives the number of test cases, T(1≤100)T(1≤100). TT test cases follow. 

Each test case begins with two numbers N(1≤N≤103)N(1≤N≤103) and M(1≤M≤N)M(1≤M≤N), indicating the number of information and number of information Gai Huang will select. Then NN numbers in a line, the ithith number ai(1≤ai≤109)ai(1≤ai≤109) indicates the value in Cao Cao's opinion of the ithith information in happening order.OutputFor each test case, output one line containing Case #x: y, where xx is the test case number (starting from 1) and yy is the ways Gai Huang can select the information. 

The result is too large, and you need to output the result mod by 1000000007(109+7)1000000007(109+7).Sample Input

2
3 2
1 2 3
3 2
3 2 1

Sample Output

Case #1: 3
Case #2: 0

Hint

In the first cases, Gai Huang need to leak 2 information out of 3. He could leak any 2 information as all the information value are in increasing order.
In the second cases, Gai Huang has no choice as selecting any 2 information is not in increasing order.

题意:

给你n个有序的数,问你能找到多少个m长度的严格递增子序列

题解:

我们设dp[i][j]表示:截至于第i个数(使用了第i个数),所能构成的严格递增子序列长度为j的个数为dp[i][j]

那么dp[i][j]的值肯定是:dp[k][j-1]之和,k属于[1,i-1]。且要满足,那么输入的第k个数要小于第i个数才可以加上dp[k][j-1]

我们看数据n=1e3,如果暴力去写,复杂度就是O(n3),所以我们肯定需要优化(我那时也不知道咋弄)

看其他题解发现,使用树状数组来优化,但是树状数组求得前缀和,而我们只是需要前缀和的一部分,这可怎么办。。

然后我们就可以处理一下输入,对于第k个数不小于第i个数的,我们可以先不处理它,那么这个dp[k][j-1]就是0

那么我们的前缀和相当于没有加上它,就可以达到满足我们的需要。这个处理只需要一个排序就可以

代码:

 1 #include<iostream>
2 #include<algorithm>
3 #include<cstdio>
4 #include<queue>
5 #include<map>
6 #include<vector>
7 #include<cstring>
8 using namespace std;
9 const int mod=1e9+7;
10 const int maxn=1e3+5;
11 #define mem(a) memset(a,0,sizeof(a))
12 //求sum(dp[1-x][j])
13 int n,m,dp[maxn][maxn];
14 struct shudui
15 {
16 int id,val;
17 }que[maxn];
18 bool cmp(shudui x,shudui y)
19 {
20 if(x.val!=y.val)
21 return x.val<y.val;
22 return x.id>y.id; //如果两个val相等,因为题目要求严格递增,所以这样排序就可以满足题意
23 }
24 int lowbit(int x)
25 {
26 return x&(-x);
27 }
28 void update(int x,int y,int val) //更新包含dp[x][y]的
29 { //后缀数组项
30 while(x<=n)
31 {
32 dp[x][y]=(dp[x][y]+val)%mod;
33 x+=lowbit(x);
34 }
35 }
36 int get_sum(int x,int y)
37 {
38 int sum=0;
39 while(x>0)
40 {
41 sum=(sum+dp[x][y])%mod;
42 x-=lowbit(x);
43 }
44 return sum;
45 }
46 int main()
47 {
48 int t,p=0;
49 scanf("%d",&t);
50 while(t--)
51 {
52 mem(dp);
53 scanf("%d%d",&n,&m);
54 for(int i=1;i<=n;++i)
55 {
56 scanf("%d",&que[i].val);
57 que[i].id=i;
58 }
59 sort(que+1,que+1+n,cmp);
60 for(int i=1;i<=n;++i)
61 {
62 for(int j=1;j<=m;++j)
63 {
64 if(j==1)
65 update(que[i].id,j,1);
66 else //因为我们按照val排过序了,所以我们可以加上前缀和就行
67 {
68 int sum=get_sum(que[i].id-1,j-1);
69 update(que[i].id,j,sum);
70 }
71 }
72 }
73 printf("Case #%d: %d\n",++p,get_sum(n,m));
74 }
75 return 0;
76 }

南阳ccpc C题 The Battle of Chibi 树状数组+dp的更多相关文章

  1. 南阳ccpc C题 The Battle of Chibi && hdu5542 The Battle of Chibi (树状数组优化+dp)

    题意: 给你一个长度为n的数组,你需要从中找一个长度为m的严格上升子序列 问你最多能找到多少个 题解: 我们先对原序列从小到大排序,排序之后的序列就是一个上升序列 这里如果两个数相等的话,那么因为题目 ...

  2. BZOJ_2683_简单题&&BZOJ_1176_[Balkan2007]Mokia_CDQ分治+树状数组

    BZOJ_2683_简单题&&BZOJ_1176_[Balkan2007]Mokia_CDQ分治+树状数组 Description 维护一个W*W的矩阵,初始值均为S.每次操作可以增加 ...

  3. HDU 6240 Server(2017 CCPC哈尔滨站 K题,01分数规划 + 树状数组优化DP)

    题目链接  2017 CCPC Harbin Problem K 题意  给定若干物品,每个物品可以覆盖一个区间.现在要覆盖区间$[1, t]$. 求选出来的物品的$\frac{∑a_{i}}{∑b_ ...

  4. tyvj P1716 - 上帝造题的七分钟 二维树状数组区间查询及修改 二维线段树

    P1716 - 上帝造题的七分钟 From Riatre    Normal (OI)总时限:50s    内存限制:128MB    代码长度限制:64KB 背景 Background 裸体就意味着 ...

  5. 【BZOJ3132】【TYVJ1716】上帝造题的七分钟 二维树状数组

    题目大意 维护一个\(n\times m\)的矩阵,有两种操作: \(1~x_1~y_1~x_2~y_2~v\):把\((a,b),(c,d)\)为顶点的矩形区域内的所有数字加上\(v\). \(2~ ...

  6. POJ 2029 Get Many Persimmon Trees (模板题)【二维树状数组】

    <题目链接> 题目大意: 给你一个H*W的矩阵,再告诉你有n个坐标有点,问你一个w*h的小矩阵最多能够包括多少个点. 解题分析:二维树状数组模板题. #include <cstdio ...

  7. 【bzoj3132】上帝造题的七分钟 二维树状数组区间修改区间查询

    题目描述 “第一分钟,X说,要有矩阵,于是便有了一个里面写满了0的n×m矩阵. 第二分钟,L说,要能修改,于是便有了将左上角为(a,b),右下角为(c,d)的一个矩形区域内的全部数字加上一个值的操作. ...

  8. [bzoj3132]上帝造题的七分钟——二维树状数组

    题目大意 你需要实现一种数据结构,支援以下操作. 给一个矩阵的子矩阵的所有元素同时加一个数. 计算子矩阵和. 题解 一看这个题,我就首先想到用线段树套线段树做. 使用二维线段树的错误解法 其实是第一次 ...

  9. P4514 上帝造题的七分钟——二维树状数组

    P4514 上帝造题的七分钟 求的是矩阵里所有数的和: 维护四个树状数组: #include<cstdio> #include<cstring> #include<alg ...

随机推荐

  1. 浅谈localStorage的使用场景和优劣势,以及sessionStorage和cookie

    一.localStorage,sessionStorage,cookie的简单介绍 localStorage:仅在客户端存储不参与服务器通信,存储大小一般为5M,如果不是人为清除,那么即使是关闭浏览器 ...

  2. 【Java基础】面向对象上

    面向对象上 这一章主要涉及 Java 类及类的成员,包括属性.方法.构造器:代码块.内部类. 面向过程与面向对象 面向过程(Procedure Oriented Programming,POP)与面向 ...

  3. 获取json格式的数据变成了undefined!?

    今天在做一个简单的登陆功能时,当一切准备就绪,点击登陆时,什么都没发生..然后开始debug,打断点调试,然后发现了这个.向页面传递数据flag是true代表该用户的账号密码验证码等信息正确可以登录, ...

  4. 编译安装 nginx -1.14.2

    编译安装 nginx -1.14.2 1 ) 下载nginx-1.14.2 源码包: wget http://nginx.org/download/nginx-1.14.2.tar.gz 2 ) 编译 ...

  5. SQL Server解惑——查询条件IN中能否使用变量

    在SQL Server的查询条件中,能否在IN里面使用变量呢? 如果可以的话,有没有需要注意的地方或一些限制呢?在回答这个问题前,我们先来看看这个例子: IF EXISTS (SELECT 1 FRO ...

  6. yum -y install gnuplot

    [root@test~]# yum -y install gnuplotLoaded plugins: fastestmirrorLoading mirror speeds from cached h ...

  7. SAP中数据库表长度的界定

    SAP中,如何查看表和关键字的长度?通过SE11菜单栏Extras->table width 可以看到.然而SAP在系统也会将表分类,特别是在可扩展的表维护视图中,分为如下几类      ult ...

  8. 学习Java第一天

    public 保证类名和文件名一致 关键字字母全小写,编辑器中有颜色标记 null空常量不能打印 变量就是内存中的存储空间 计算机中最小的存储单元时字节(byte) //1字节(B) = 8位(bit ...

  9. centos下解压rar文件,Linux解压tar.gz和tar.bz2的命令

    1.下载:根据主机系统下载合适的版本,当前64为centos系统演示下载: wget http://www.rarlab.com/rar/rarlinux-x64-5.3.0.tar.gz 2.解压安 ...

  10. Windows和Linux下apache-artemis-2.10.0安装配置

     window下安装配置 一.官网下载 http://activemq.apache.org/artemis/download.html 二.百度网盘下载 链接:https://pan.baidu.c ...