题意为在满足\(\sum\limits_{i=1}^nk_i(v_i-v_i^\prime)^2s_i\leqslant E_U\)的条件下最小化\(\sum\limits_{i=1}^n\frac{s_i}{v_i}\)

先考虑贪心,因为最小化\(\sum\limits_{i=1}^n\frac{s_i}{v_i}\),所以\(\sum\limits_{i=1}^nk_i(v_i-v_i^\prime)^2s_i=E_U\)时为最优情况。

发现是一个有约束的极值问题,考虑用拉格朗日乘数法来解决。

设\(f(v)=\sum\limits_{i=1}^n\frac{s_i}{v_i}\),\(φ(v)=\sum\limits_{i=1}^nk_i(v_i-v_i^\prime)^2s_i-E_U\)

设拉格朗日函数为\(L(v,λ)=f(v)+λφ(v)\)

代入得\(L(v,λ)=\sum\limits_{i=1}^n\frac{s_i}{v_i}+λ[\sum\limits_{i=1}^nk_i(v_i-v_i^\prime)^2s_i-E_U]\)

根据拉格朗日乘数法得,当拉格朗日函数\(L\)梯度为\(0\)时,\(f(v)\)最优

\[\begin{cases}\nabla_{v_1}L(v,λ)=0\\\nabla_{v_2}L(v,λ)=0\\......\\\nabla_{v_n}L(v,λ)=0\\\nabla_λL(v,λ)=0\end{cases}
\]

求偏导后可得(这里将有关\(v\)的写成一个式子了)

\[\begin{cases}\nabla_vL(v,λ)=2λk_i(v_i-v_i^\prime)s_i-\frac{s_i}{v_i^2}=0\\\nabla_λL(v,λ)=\sum\limits_{i=1}^nk_i(v_i-v_i^\prime)^2s_i-E_U=0\end{cases}
\]

进一步化简后得

\[\begin{cases}2λk_iv_i^2(v_i-v_i^\prime)=1\ (1)\\\sum\limits_{i=1}^nk_i(v_i-v_i^\prime)^2s_i=E_U\ (2)\end{cases}
\]

那么将上面的方程组解出来,即为我们要求的答案。

考虑到在\((1)\)式中\(v_i\)必须大于等于\(v_i^\prime\),所以为保证式子成立\(λ\)必须大于\(0\),同时发现\((1)\)式左边关于\(v_i\)单调递增,所以我们二分求出每一个\(v_i\),再代入\((1)\)式来检验。

但发现\(λ\)的值也不确定,于是要在二分\(v_i\)的外层再套上一层\(λ\)的二分,这里代入\((2)\)式来检验。

实现细节看代码吧。

\(code:\)

#include<bits/stdc++.h>
#define maxn 10010
#define eps 1e-12
using namespace std;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
int n;
double E,ans;
double s[maxn],k[maxn],v[maxn],u[maxn];
double calc(double x)
{
return x*x;
}
bool judge(double p,double v,double k,double u)
{
return 2*p*k*calc(v)*(v-u)<=1;
}
bool check(double p)
{
double e=0;
for(int i=1;i<=n;++i)
{
double l=max(u[i],(double)0),r=1e5,ans;
while(l+eps<=r)
{
double mid=(l+r)/2.0;
if(judge(p,mid,k[i],u[i])) ans=l=mid;
else r=mid;
}
v[i]=ans;
e+=k[i]*calc(v[i]-u[i])*s[i];
}
return e<=E;
}
int main()
{
read(n);
scanf("%lf",&E);
for(int i=1;i<=n;++i)
scanf("%lf%lf%lf",&s[i],&k[i],&u[i]);
double l=0,r=1e5;
while(l+eps<=r)
{
double mid=(l+r)/2.0;
if(check(mid)) r=mid;
else l=mid;
}
for(int i=1;i<=n;++i) ans+=s[i]/v[i];
printf("%.8lf",ans);
return 0;
}

题解 洛谷 P2179 【[NOI2012]骑行川藏】的更多相关文章

  1. 洛谷P2179 [NOI2012]骑行川藏(拉格朗日乘数法)

    题面 传送门 题解 看\(mashirosky\)大佬的题解吧--这里 //minamoto #include<bits/stdc++.h> #define R register #def ...

  2. 【洛谷】P2179 [NOI2012]骑行川藏

    题解 感谢小迪给我讲题啊,这题小迪写挺好的我就不写了吧 小迪的题解 代码 #include <iostream> #include <cstdio> #include < ...

  3. Luogu P2179 [NOI2012]骑行川藏

    题意 给定 \(n\) 个路段,每个路段用三个实数 \(s_i,k_i,v^\prime_i\) 描述,最小化 \[F(v_1,\cdots v_n)=\sum\limits_{i=1}^{n}\fr ...

  4. bzoj 2876: [Noi2012]骑行川藏 拉格朗日数乘

    2876: [Noi2012]骑行川藏 Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 1033  Solved: ...

  5. bzoj2876 [Noi2012]骑行川藏

    Description 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因 ...

  6. bzoj2876 [NOI2012]骑行川藏(拉格朗日乘数法)

    题目描述 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因此在每天的骑行 ...

  7. 2876: [Noi2012]骑行川藏 - BZOJ

    Description 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因 ...

  8. 【BZOJ】2876: [Noi2012]骑行川藏

    题意 给出\(s_i, k_i, v_i', E\),满足\(\sum_{i=1}^{n} k_i s_i ( v_i - v_i' )^2 \le E, v_i > v_i'\),最小化$ \ ...

  9. [NOI2012] 骑行川藏 | 求导 二分

    一个能看的题解!预备知识只有高中数学的[导数].不用什么偏导数/拉格朗日乘子法之类的我看不懂的东西( •̀∀•́ )! 如果你不知道什么是导数,可以找本高中数学选修2-2来看一下!看第一章第1.2节就 ...

随机推荐

  1. CCNA-Part1:网络基础概念

    由于身处一家网络公司,日常项目中设计到的网络概念较多,恰逢之后公司组织相关培训.借此机会,打算写下一系列文章用于之后梳理并回顾.文章主要涉及 NA,NP 中所覆盖的知识.由于网络分为较多方向,如路由交 ...

  2. 47 _ 循环队列程序演示.swf

    通过上面的分析我们已经对循环队列很了解了,现在我们来学习下循环队列的实现形式 1.代码使用数组现实循环队列 #include<stdio.h> #include<malloc.h&g ...

  3. 在采用K8S之前您必须了解的5件事情

    作者简介 Christopher Tozzi,自2008年来以自由职业者的身份对Linux.虚拟化.容器.数据存储及其相关主题进行报道. 时至今日,Kubernetes已然成为风靡一时的容器编排调度工 ...

  4. Code Walkthroughs Table API

    上级:https://www.cnblogs.com/hackerxiaoyon/p/12747387.html Table API Table api 有批量的api和流实时的api.通常很容易进行 ...

  5. Scala创建SparkStreaming获取Kafka数据代码过程

    正文 首先打开spark官网,找一个自己用版本我选的是1.6.3的,然后进入SparkStreaming   ,通过搜索这个位置找到Kafka, 点击过去会找到一段Scala的代码 import or ...

  6. C# Thread、lock

    class Program { private static readonly object obj = new object(); static void Main(string[] args) { ...

  7. Python之浅谈生成器

    目录 三元表达式 列表推导式 字典生成式 生成器 生成器表达式 匿名函数 三元表达式 a=0 b=6 print (a)if a>b else print(b) 三元表达式只能写if的双分支结构 ...

  8. Java项目开启远程调试(tomcat、springboot)

    当我们运行一个项目的时候,一般都是在本地进行debug.但是如果是一个分布式的微服务,这时候我们选择远程debug是我们开发的利器. 环境apache-tomcat-8.5.16 Linux 如何启用 ...

  9. Linux下C++动态加载so 调用方法

    Windows 下的C++动态加载DLL调用方法 文献参考 http://man7.org/linux/man-pages/man0/dlfcn.h.0p.html http://man7.org/l ...

  10. USACO07NOV Cow Relays G 题解

    题目 For their physical fitness program, \(N (2 ≤ N ≤ 1,000,000)\) cows have decided to run a relay ra ...