题解 洛谷 P2179 【[NOI2012]骑行川藏】
题意为在满足\(\sum\limits_{i=1}^nk_i(v_i-v_i^\prime)^2s_i\leqslant E_U\)的条件下最小化\(\sum\limits_{i=1}^n\frac{s_i}{v_i}\)
先考虑贪心,因为最小化\(\sum\limits_{i=1}^n\frac{s_i}{v_i}\),所以\(\sum\limits_{i=1}^nk_i(v_i-v_i^\prime)^2s_i=E_U\)时为最优情况。
发现是一个有约束的极值问题,考虑用拉格朗日乘数法来解决。
设\(f(v)=\sum\limits_{i=1}^n\frac{s_i}{v_i}\),\(φ(v)=\sum\limits_{i=1}^nk_i(v_i-v_i^\prime)^2s_i-E_U\)
设拉格朗日函数为\(L(v,λ)=f(v)+λφ(v)\)
代入得\(L(v,λ)=\sum\limits_{i=1}^n\frac{s_i}{v_i}+λ[\sum\limits_{i=1}^nk_i(v_i-v_i^\prime)^2s_i-E_U]\)
根据拉格朗日乘数法得,当拉格朗日函数\(L\)梯度为\(0\)时,\(f(v)\)最优
\]
求偏导后可得(这里将有关\(v\)的写成一个式子了)
\]
进一步化简后得
\]
那么将上面的方程组解出来,即为我们要求的答案。
考虑到在\((1)\)式中\(v_i\)必须大于等于\(v_i^\prime\),所以为保证式子成立\(λ\)必须大于\(0\),同时发现\((1)\)式左边关于\(v_i\)单调递增,所以我们二分求出每一个\(v_i\),再代入\((1)\)式来检验。
但发现\(λ\)的值也不确定,于是要在二分\(v_i\)的外层再套上一层\(λ\)的二分,这里代入\((2)\)式来检验。
实现细节看代码吧。
\(code:\)
#include<bits/stdc++.h>
#define maxn 10010
#define eps 1e-12
using namespace std;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
int n;
double E,ans;
double s[maxn],k[maxn],v[maxn],u[maxn];
double calc(double x)
{
return x*x;
}
bool judge(double p,double v,double k,double u)
{
return 2*p*k*calc(v)*(v-u)<=1;
}
bool check(double p)
{
double e=0;
for(int i=1;i<=n;++i)
{
double l=max(u[i],(double)0),r=1e5,ans;
while(l+eps<=r)
{
double mid=(l+r)/2.0;
if(judge(p,mid,k[i],u[i])) ans=l=mid;
else r=mid;
}
v[i]=ans;
e+=k[i]*calc(v[i]-u[i])*s[i];
}
return e<=E;
}
int main()
{
read(n);
scanf("%lf",&E);
for(int i=1;i<=n;++i)
scanf("%lf%lf%lf",&s[i],&k[i],&u[i]);
double l=0,r=1e5;
while(l+eps<=r)
{
double mid=(l+r)/2.0;
if(check(mid)) r=mid;
else l=mid;
}
for(int i=1;i<=n;++i) ans+=s[i]/v[i];
printf("%.8lf",ans);
return 0;
}
题解 洛谷 P2179 【[NOI2012]骑行川藏】的更多相关文章
- 洛谷P2179 [NOI2012]骑行川藏(拉格朗日乘数法)
题面 传送门 题解 看\(mashirosky\)大佬的题解吧--这里 //minamoto #include<bits/stdc++.h> #define R register #def ...
- 【洛谷】P2179 [NOI2012]骑行川藏
题解 感谢小迪给我讲题啊,这题小迪写挺好的我就不写了吧 小迪的题解 代码 #include <iostream> #include <cstdio> #include < ...
- Luogu P2179 [NOI2012]骑行川藏
题意 给定 \(n\) 个路段,每个路段用三个实数 \(s_i,k_i,v^\prime_i\) 描述,最小化 \[F(v_1,\cdots v_n)=\sum\limits_{i=1}^{n}\fr ...
- bzoj 2876: [Noi2012]骑行川藏 拉格朗日数乘
2876: [Noi2012]骑行川藏 Time Limit: 20 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 1033 Solved: ...
- bzoj2876 [Noi2012]骑行川藏
Description 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因 ...
- bzoj2876 [NOI2012]骑行川藏(拉格朗日乘数法)
题目描述 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因此在每天的骑行 ...
- 2876: [Noi2012]骑行川藏 - BZOJ
Description 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因 ...
- 【BZOJ】2876: [Noi2012]骑行川藏
题意 给出\(s_i, k_i, v_i', E\),满足\(\sum_{i=1}^{n} k_i s_i ( v_i - v_i' )^2 \le E, v_i > v_i'\),最小化$ \ ...
- [NOI2012] 骑行川藏 | 求导 二分
一个能看的题解!预备知识只有高中数学的[导数].不用什么偏导数/拉格朗日乘子法之类的我看不懂的东西( •̀∀•́ )! 如果你不知道什么是导数,可以找本高中数学选修2-2来看一下!看第一章第1.2节就 ...
随机推荐
- 在树莓派上读取DHT11温湿度传感器-python代码实现及常见问题(全面简单易懂)
最近由于自己的课题需要,想要用在树莓派上使用DHT11温湿度传感器来读取空气中温湿度,遇到了几个问题,解决之后也对之前的知识进行了回顾,总结,特整理如下,希望能给也在学习树莓派的小伙伴们带来一些帮助. ...
- SQL注入之Boolean型盲注
什么是Boolean型注入 Boolean型的注入意思就是页面返回的结果是Boolean型的,通过构造SQL判断语句,查看页面的返回结果是否报错,页面返回是否正常等来判断哪些SQL判断条件时成立的,通 ...
- 46道Linux面试题送给你(后续会不断更新)
绝对路径用什么符号表示? 当前目录.上层目录用什么表示?主目录用什么表示? 切换目录用什么命令? 答案: # 绝对路径: 如/etc/init.d # 当前目录和上层目录: ./ ../ # 主目录: ...
- Linux虚拟机下安装Oracle 11G教程图文解说
1.安装环境 操作系统:Red hat 6.5 内存:内存最低要求256M (使用:grep MemTotal /proc/meminfo 命令查看) 交换空间:SWAP交换空间大小根据内存大小决定( ...
- actuator与spring-boot-admin 可以说的秘密
SpringBoot 是为了简化 Spring 应用的创建.运行.调试.部署等一系列问题而诞生的产物,自动装配的特性让我们可以更好的关注业务本身而不是外部的XML配置,我们只需遵循规范,引入相关的依赖 ...
- Yolo训练自定义目标检测
Yolo训练自定义目标检测 参考darknet:https://pjreddie.com/darknet/yolo/ 1. 下载darknet 在 https://github.com/pjreddi ...
- 大型Java进阶专题(六)设计模式之代理模式
代理模式 前言 又开始我的专题了,又停滞了一段时间了,加油继续吧.都知道 SpringAOP 是用代理模式实现,到底是怎么实现的?我们来一探究竟,并且自己仿真手写还原部分细节. 代理模式的应用 在生活 ...
- 《The Design of a Practical System for Fault-Tolerant Virtual Machines》论文总结
VM-FT 论文总结 说明:本文为论文 <The Design of a Practical System for Fault-Tolerant Virtual Machines> 的个人 ...
- CSRF 跨站请求伪造学习笔记
参考文章: 漏洞挖掘之CSRF CSRF花式绕过Referer技巧 What-是什么 CSRF(Cross-site request forgery)跨站请求伪造.攻击者通过构造特殊链接或者页面,盗用 ...
- CSS中的一些细节
一.塌陷 1.当position设置为:absolute或者fixed时,元素的display会转换为block.(设置float也会产生这样的效应)2.正常情况下,div会被内容撑开,但是如果设置了 ...