python- generator生成器
什么是生成器?
通过列表生成式,我们可以直接创建一个列表,但是,受到内存限制,列表容量肯定是有限的,而且创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。
所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间,在Python中,这种一边循环一边计算的机制,称为生成器:generator
生成器是一个特殊的程序,可以被用作控制循环的迭代行为,python中生成器是迭代器的一种,使用yield返回值函数,每次调用yield会暂停,而可以使用next()函数和send()函数恢复生成器。
生成器类似于返回值为数组的一个函数,这个函数可以接受参数,可以被调用,但是,不同于一般的函数会一次性返回包括了所有数值的数组,生成器一次只能产生一个值,这样消耗的内存数量将大大减小,而且允许调用函数可以很快的处理前几个返回值,因此生成器看起来像是一个函数,但是表现得却像是迭代器
python中的生成器
要创建一个generator,有很多种方法,第一种方法很简单,只有把一个列表生成式的[]中括号改为()小括号,就创建一个generator
举例说明:
# 列表生成式
lis = [x * x for x in range(10)]
print(lis)
# 生成器
generator_ex = (x * x for x in range(10))
print(generator_ex)
结果:
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
<generator object <genexpr> at 0x0000024C407E4570>
那么创建list和generator_ex,的区别是什么呢?从表面看就是[ ]和(),但是结果却不一样,一个打印出来是列表(因为是列表生成式),而第二个打印出来却是<generator object at 0x000002A4CBF9EBA0>,那么如何打印出来generator_ex的每一个元素呢?
如果要一个个打印出来,可以通过next()函数获得generator的下一个返回值:
生成器
generator_ex = (x * x for x in range(10))
print(next(generator_ex))
print(next(generator_ex))
print(next(generator_ex))
print(next(generator_ex))
print(next(generator_ex))
print(next(generator_ex))
print(next(generator_ex))
print(next(generator_ex))
print(next(generator_ex))
print(next(generator_ex))
结果:
0
1
4
9
16
25
36
49
64
81
print(next(generator_ex))
StopIteration
[Finished in 0.1s]
大家可以看到,generator保存的是算法,每次调用next(generaotr_ex)就计算出他的下一个元素的值,直到计算出最后一个元素,没有更多的元素时,抛出StopIteration的错误,而且上面这样不断调用是一个不好的习惯,正确的方法是使用for循环,因为generator也是可迭代对象:
# 生成器
generator_ex = (x * x for x in range(10))
for i in generator_ex:
print(i)
以我们创建一个generator后,基本上永远不会调用next(),而是通过for循环来迭代,并且不需要关心StopIteration的错误,generator非常强大,如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。
比如著名的斐波那契数列,除第一个和第二个数外,任何一个数都可以由前两个相加得到:
1,1,2,3,5,8,12,21,34.....
斐波那契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:
# fibonacci数列
def fib(max):
n, a, b = 0, 0, 1
while n < max:
a, b = b, a + b
n = n + 1
print(a)
return 'done'
a = fib(10)
print(a)
a,b = b ,a+b 其实相当于 t =a+b ,a =b ,b =t ,所以不必写显示写出临时变量t,就可以输出斐波那契数列的前N个数字。上面输出的结果如下:
1
1
2
3
5
8
13
21
34
55
done
仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。
def fib(max):
n, a, b = 0, 0, 1
while n < max:
yield b
a, b = b, a + b
n = n + 1
return 'done'
a = fib(10)
print(a)
但是返回的不再是一个值,而是一个生成器,和上面的例子一样,大家可以看一下结果:
<generator object fib at 0x000001C03AC34FC0>
那么这样就不占内存了,这里说一下generator和函数的执行流程,函数是顺序执行的,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次被next()调用时候从上次的返回yield语句处急需执行,也就是用多少,取多少,不占内存。
把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:
def fib(max):
n, a, b = 0, 0, 1
while n < max:
yield b
a, b = b, a + b
n = n + 1
return 'done'
a = fib(10)
# print(a)
for i in a:
print(i)
但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果拿不到返回值,那么就会报错,所以为了不让报错,就要进行异常处理,拿到返回值,如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中:
def fib(max):
n, a, b = 0, 0, 1
while n < max:
yield b
a, b = b, a + b
n = n + 1
return 'done'
g = fib(6)
while True:
try:
x = next(g)
print('generator: ', x)
except StopIteration as e:
print("生成器返回值:", e.value)
break
结果:
generator: 1
generator: 1
generator: 2
generator: 3
generator: 5
generator: 8
生成器返回值: done
还可以通过yield实现在单线程的情况下实现并发运算的效果
import time
def consumer(name):
print("%s 准备学习啦!" %name)
while True:
lesson = yield
print("开始[%s]了,[%s]老师来讲课了!" %(lesson,name))
def producer(name):
c = consumer('A')
c2 = consumer('B')
c.__next__()
c2.__next__()
print("同学们开始上课 了!")
for i in range(10):
time.sleep(1)
print("到了两个同学!")
c.send(i)
c2.send(i)
由上面的例子我么可以发现,python提供了两种基本的方式
生成器函数:也是用def定义的,利用关键字yield一次性返回一个结果,阻塞,重新开始
生成器表达式:返回一个对象,这个对象只有在需要的时候才产生结果
——生成器函数
为什么叫生成器函数?因为它随着时间的推移生成了一个数值队列。一般的函数在执行完毕之后会返回一个值然后退出,但是生成器函数会自动挂起,然后重新拾起急需执行,他会利用yield关键字关起函数,给调用者返回一个值,同时保留了当前的足够多的状态,可以使函数继续执行,生成器和迭代协议是密切相关的,迭代器都有一个__next__()__成员方法,这个方法要么返回迭代的下一项,要么引起异常结束迭代。
def create_counter(n):
print("create_counter")
while True:
yield n
print("increment n")
n += 1
gen = create_counter(2)
print(gen)
print(next(gen))
print(next(gen))
——生成器表达式
生成器表达式来源于迭代和列表解析的组合,生成器和列表解析类似,但是它使用尖括号而不是方括号
# 列表解析生成列表
x=[ x ** 3 for x in range(5)]
print(x)
結果:
[0, 1, 8, 27, 64]
# 生成器表达式
x=(x ** 3 for x in range(5))
print(x)
結果:
<generator object <genexpr> at 0x000000000315F678>
# 两者之间转换
x=list(x ** 3 for x in range(5))
print(x)
結果:
[0, 1, 8, 27, 64]
一个迭代既可以被写成生成器函数,也可以被协程生成器表达式,均支持自动和手动迭代。而且这些生成器只支持一个active迭代,也就是说生成器的迭代器就是生成器本身。
迭代器(迭代就是循环)
迭代器包含有next方法的实现,在正确的范围内返回期待的数据以及超出范围后能够抛出StopIteration的错误停止迭代。
我们已经知道,可以直接作用于for循环的数据类型有以下几种:
一类是集合数据类型,如list,tuple,dict,set,str等
一类是generator,包括生成器和带yield的generator function
这些可以直接作用于for 循环的对象统称为可迭代对象:Iterable
可以使用isinstance()判断一个对象是否为可Iterable对象
from collections import Iterable
isinstance([], Iterable)
opIteration错误表示无法继续返回下一个值了。
所以这里讲一下迭代器
一个实现了iter方法的对象时可迭代的,一个实现next方法的对象是迭代器
可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。
可以使用isinstance()判断一个对象是否是Iterator对象:
生成器都是Iterator对象,但list、dict、str虽然是Iterable(可迭代对象),却不是Iterator(迭代器)。
把list、dict、str等Iterable变成Iterator可以使用iter()函数:
isinstance(iter([]), Iterator)
True
isinstance(iter('abc'), Iterator)
True
你可能会问,为什么list、dict、str等数据类型不是Iterator?
这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。
Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。
python- generator生成器的更多相关文章
- python generator(生成器)
a=(x*2 for x in range(1000)) # print(a.next())#python2使用 print(a.__next__()) #python3使用 print(next(a ...
- Python之生成器(generator)和迭代器(Iterator)
generator 生成器generator:一边循环一边计算的机制. 生成器是一个特殊的程序,可以被用于控制循环的迭代行为.python中的生成器是迭代器的一种,使用yield返回值函数,每次调用y ...
- Python高级语法之:一篇文章了解yield与Generator生成器
Python高级语法中,由一个yield关键词生成的generator生成器,是精髓中的精髓.它虽然比装饰器.魔法方法更难懂,但是它强大到我们难以想象的地步:小到简单的for loop循环,大到代替多 ...
- Python的程序结构[7] -> 生成器/Generator -> 生成器浅析
生成器 / Generator 目录 关于生成器 生成器与迭代器 生成器的建立 通过迭代生成器获取值 生成器的 close 方法 生成器的 send 方法 生成器的 throw 方法 空生成器的检测方 ...
- 关于 Python generator(生成器)的类比
Python 的生成器运用仿佛是最完美的 xing爱,生成器本身和循环代表男女,结束代表同时达到高潮,不是很精准,但很有趣啊!哈哈哈,一下记住了
- Python中生成器generator和迭代器Iterator的使用方法
一.生成器 1. 生成器的定义 把所需要值得计算方法储存起来,不会先直接生成数值,而是等到什么时候使用什么时候生成,每次生成一个,减少计算机占用内存空间 2. 生成器的创建方式 第一种只要把一个列表生 ...
- Python generator和yield介绍
Python生成器(generator)并不是一个晦涩难懂的概念.相比于MetaClass和Closure等概念,其较为容易理解和掌握.但相对于程序结构:顺序.循环和分支而言其又不是特别的直观.无论学 ...
- python中和生成器协程相关的yield from之最详最强解释,一看就懂(四)
如果认真读过上文的朋友,应该已经明白了yield from实现的底层generator到caller的上传数据通道是什么了.本文重点讲yield from所实现的caller到coroutine的向下 ...
- python中和生成器协程相关yield from之最详最强解释,一看就懂(二)
一. 从列表中yield 语法形式:yield from <可迭代的对象实例> python中的列表是可迭代的, 如果想构造一个生成器逐一产生list中元素,按之前的yield语法,是在 ...
- python中和生成器协程相关的yield之最详最强解释,一看就懂(一)
yield是python中一个非常重要的关键词,所有迭代器都是yield实现的,学习python,如果不把这个yield的意思和用法彻底搞清楚,学习python的生成器,协程和异步io的时候,就会彻底 ...
随机推荐
- 资料共享-源代码-视频教程-PLC-OpenCV-C++-MFC
资料共享-源代码-视频教程-PLC-OpenCV-C++-MFC 资料共享-源代码-视频教程 资料共享-源代码-视频教程-PLC-OpenCV-C++-MFC
- c++深复制与浅复制区别代码示范vs2015-txwtech
c++深复制与浅复制区别代码示范vs2015-txwtech c++深复制与浅复制区别代码示范 区别: 深复制: CDemo B = A; B.str[0] = 'K';//B对象里面的元素修改后,A ...
- LeetCode 题解目录
前言 本目录将不断更新记录leetcode的刷题日记. 二叉树 序号 标题 难度 标签 1 108 将有序数组转换为二叉搜索树 简单 树.深度优先搜索 2 538 把二叉搜索树转换为累加树 简单 树 ...
- Linux nohup命令详解,终端关闭程序依然可以在执行!
大家好,我是良许. 在工作中,我们很经常跑一个很重要的程序,有时候这个程序需要跑好几个小时,甚至需要几天,这个时候如果我们退出终端,或者网络不好连接中断,那么程序就会被中止.而这个情况肯定不是我们想看 ...
- PHP丨PHP基础知识之条件语IF判断「理论篇」
if语句是指编程语言(包括c语言.C#.VB.java.php.汇编语言等)中用来判定所给定的条件是否满足,根据判定的结果(真或假)决定执行给出的两种操作之一. if语句概述 if语句是指编程语言(包 ...
- Nginx 如何自定义变量?
之前的两篇文章 Nginx 变量介绍以及利用 Nginx 变量做防盗链 讲的是 Nginx 有哪些变量以及一个常见的应用.那么如此灵活的 Nginx 怎么能不支持自定义变量呢,今天的文章就来说一下自定 ...
- SpringBoot--防止重复提交(锁机制---本地锁、分布式锁)
防止重复提交,主要是使用锁的形式来处理,如果是单机部署,可以使用本地缓存锁(Guava)即可,如果是分布式部署,则需要使用分布式锁(可以使用zk分布式锁或者redis分布式锁),本文的分布式锁以red ...
- git和github入门指南(1)
1.git和github简介 1.1.git是什么?github是什么?git和github的关系? Git是一个开源的分布式版本控制系统,可以有效.高速地处理从很小到非常大的项目版本管理. Git ...
- C#判断某元素是否存在数组中
string s = "K2:CENTALINE\\lukshing|K2:CENTALINE"; string[] s1 = s.Split('|'); //判断方式是 等于 而 ...
- Redis系列(六):数据结构QuickList(快速列表)源码解析
1.介绍 Redis在3.2版本之前List的底层编码是ZipList和LinkedList实现的 在3.2版本之后,重新引入了QuickList的数据结构,列表的底层都是QuickList实现 当L ...