黎曼函数ζ(2n)的几种求法
\(\zeta (2n)\)的几种求法
结论
\]
欧拉的证明
PS:欧拉在《无穷小分析引论中》,是对 \(e^x + e^{-x}\) 的展开系数进行分析,而下文是对 \(\frac{\sin(x)}{x}\) 分析,两者几乎没有区别。
这一方法通过比较 \(\frac{\sin(x)}{x}\) 的无穷级数展开和无穷乘积展开的各项系数,依次求出 \(\zeta(2),\zeta(4),\zeta(6),\cdots\) 的值。
无穷级数展开:
\]
观察发现,\(\frac{\sin(x)}{x}\) 的根集为 \(x=n\cdot \pi,\mbox{ }(n = \pm1, \pm2, \pm3, \dots)\),
因此可以猜测无穷乘积展开:
\]
事实上,欧拉并没有证明这个无穷乘积展开,直到100年后魏尔施特拉斯提出了“魏尔施特拉斯分解定理”(Weierstrass factorization theorem)。
先比较二次项系数,可以求得 \(\zeta(2)\):
-\frac{1}{3!} &= (-\frac{1}{\pi ^2})+(-\frac{1}{4\pi ^2})+\cdots=-\frac{1}{\pi^2}\cdot \zeta(2)
\\
\zeta(2) &= \frac{\pi^2}{6}
\end{aligned}
\]
继续比较四次项系数,可以求得 \(\zeta(4)\):
\frac{1}{5!} &= \sum_{1\le i<j} \frac{1}{i^2\pi^2}\cdot \frac{1}{j^2\pi^2}
=\frac{1}{2}\left( \left(\sum_{1\le i}\frac{1}{i^2\pi^2}\right)^2 - \sum_{1\le i} \frac{1}{i^4\pi^4} \right)
\\&=\frac{1}{2\pi^4} (\zeta^2(2)-\zeta(4))
\\
\zeta(4)&=\frac{\pi^4}{90}
\end{aligned}
\]
用这种方式,可以继续依次求出 \(\zeta(6), \zeta(8), \cdots\)。
可以用牛顿恒等式:
\]
作用到这个无穷乘积式上,把 \(x^2\) 看作一个整体 \(y\)。由无穷级数的各项系数得:\(\sigma_n = \frac{1}{(2n+1)!}\)
又有 \(S_n = (\frac{1}{\pi^2})^n+(\frac{1}{4\pi^2})^n+(\frac{1}{9\pi^2})^n + \cdots = \frac{\zeta(2n)}{\pi^{2n}}\)
所以对任意 \(n\),可以得到 \(\zeta(2),\zeta(4),\cdots, \zeta(2n)\) 之间的关系式:
\]
于是可以由数学归纳法,推得
\]
进一步探索,\(\zeta\) 函数、余切、伯努利数的关系
如果延续欧拉的证明,而不用数学归纳法推导最终的式子,是否可以推出 \(\zeta\) 函数和伯努利数的关系?
令 \(P(y) = \frac{sin(\sqrt{y})}{\sqrt{y}}=(1-\frac{y}{\pi^2})(1-\frac{y}{4\pi^2})(1-\frac{y}{9\pi^2})\cdots = 1-\sigma_1 y+\sigma_2 y^2-\sigma_3y^3+\cdots\)
考虑构造数列 \(\{0,S_1,S_2,S_3,\cdots\}\) 的生成函数 \(Q(y)=S_1y+S_2y^2+S_3y^3+\cdots\)
再由牛顿恒等式 \(S_n = (-1)^{n+1}\sigma_nn + \sum_{i=1}^{n-1} (-1)^{i+1} \sigma_{i}S_{n-i}\),观察 \(F(y) = P(y)\cdot Q(y)\) 的各次项系数,可得:
F(y)=P(y)\cdot Q(y) &= \sum_{i=1}^n y^i\left(S_i+\sum_{j=1}^{i-1}(-1)^j\sigma_jS_{i-j}\right)
\\&=\sum_{i=1}^n y^i\left(-1^{i+1}\sigma_i i\right)
\\&=-y\cdot \frac{d}{dy}P(y)=-y\cdot P'(y)
\\Q(y) &= -y\cdot \frac{P'(y)}{P(y)}
\end{aligned}
\]
将 \(P(y)=\frac{\sin(\sqrt{y})}{\sqrt{y}},\ P'(y)=\frac{\cos(\sqrt{y})}{2y}-\frac{\sin(\sqrt{y})}{2y\sqrt{y}}\) 代入,得:
Q(y)&=\frac{1}{2}-\frac{1}{2}\sqrt{y}\cot \sqrt{y}
\\&=\sum_{i=1}^{\infty}y^i\cdot \frac{\zeta(2i)}{\pi^{2i}}
\end{aligned}
\]
所以 \(cot(x)\) 的洛朗展开式是
\]
由此,我们推出了 \(\zeta\) 函数与余切的关系!
接下来就简单了。由伯努利数的生成函数定义可知:
\]
尝试寻找余切函数和伯努利数的关系:
i\cot(ix)&=coth(x)=\frac{e^{2x}+1}{e^{2x}-1}=\frac{1}{e^{2x}-1}+\frac{1}{1-e^{-2x}}
\\&=\frac{1}{2x}(B(x)+B(-x))
\\&=\frac{1}{x}+\sum_{n=1}^{\infty}\frac{B_{2n}2^{2n}}{(2n)!}x^{2n-1}
\\cot(x)&=\frac{1}{x}+\sum_{n=1}^{\infty}\frac{(-1)^{n}2^{2n}B_{2n}}{(2n)!}x^{2n-1}
\end{aligned}
\]
由此,我们推出了余切与伯努利数的关系!
比较两个洛朗展开式的系数,便求得\(\zeta\)函数与伯努利数的关系:
\]
傅立叶分析证明
利用傅立叶级数求 \(\zeta(2n)\) 的方法是比较常规的,也是比较方便的。
考虑函数 \(f(x)=x^2,\ x\in [-\pi ,+\pi]\),将其傅立叶展开:
\]
取 \(x=\pi\),易得 \(\zeta(2)=\frac{\pi^2}{6}\)。
尝试求 \(\zeta(4)\),考虑函数 \(f(x)=x^4,\ x\in [-\pi,+\pi]\),将其傅立叶展开:
\]
结果非常的 Amazing!
同样地取 \(x=\pi\),化简得 \(8\pi^2\zeta(2)-48\zeta(4)+\frac{\pi^4}{5}=\pi^4\),\(\zeta(4)=\frac{\pi^4}{90}\)。
用同样的方法对 \(f(x)=x^{2m}\) 展开,可以继续依次求出 \(\zeta(6),\zeta(8),\cdots\)
考虑函数 \(f(x)=x^{2m}\) 的傅立叶级数:
\]
计算系数:
a_0&=\frac{1}{2\pi}\int_{-\pi}^{\pi}f(x)dx=\frac{\pi^{2m}}{2m+1}
\\a_n&=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)cos(nx)dx=\frac{1}{\pi}\int_{-\pi}^{\pi}x^{2m}cos(nx)dx
\\&=\frac{1}{\pi}\left(\left.\left( x^{2m}\frac{sin(nx)}{n}+(x^{2m})'\frac{cos(nx)}{n^2}-(x^{2n})''\frac{sin(nx)}{n^3}-(x^{2m})'''\frac{cos(nx)}{n^4}+\cdots
\\+(-1)^{m-1}(x^{2m})^{[2m-1]}\frac{cos(nx)}{n^{2m}} \right)\right|_{-\pi}^{\pi}
+\int_{-\pi}^{\pi}(-1)^{m}(x^{2m})^{[2m]}\frac{cos(nx)}{n^{2m}}dx
\right)
\\&=\frac{1}{\pi}\left(\sum_{i=0}^{m-1}(-1)^i\left.\left(
\frac{(2m)!}{(2m-2i)!}x^{2m-2i}\frac{sin(nx)}{n^{2i+1}}+\frac{(2m)!}{(2m-2i-1)!}x^{2m-2i-1}\frac{cos(nx)}{n^{2i+2}}
\right)\right|_{-\pi}^{\pi}
\right)
\\&=\frac{1}{\pi}\left(\sum_{i=0}^{m-1}(-1)^i\frac{2\cdot (2m)!}{(2m-2i-1)!}\pi^{2m-2i-1}\frac{(-1)^n}{n^{2i+2}} \right)
\\&(n=1,2,\cdots)
\end{aligned}
\]
取 \(x=\pi\),对展开式进行化简:
f(\pi)&=\pi^{2m}=a_0+\sum_{n=1}^{\infty}\left(a_n \cdot(-1)^n\right)
\\&=\frac{\pi^{2m}}{2m+1}+ \sum_{n=1}^{\infty}\frac{1}{\pi}\left(\sum_{i=0}^{m-1}(-1)^i\frac{2\cdot (2m)!}{(2m-2i-1)!}\pi^{2m-2i-1}\frac{1}{n^{2i+2}} \right)
\\&=\frac{\pi^{2m}}{2m+1}+ \sum_{i=1}^{m}(-1)^{i+1}\frac{2\cdot (2m)!}{(2m-2i+1)!}\pi^{2m-2i}\sum_{n=1}^{\infty}\frac{1}{n^{2i}}
\\&=\frac{\pi^{2m}}{2m+1}+ \sum_{i=1}^{m}(-1)^{i+1}\frac{2\cdot (2m)!}{(2m-2i+1)!}\pi^{2m-2i}\zeta(2i)
\end{aligned}
\]
所以对任意 \(m\),可以得到 \(\zeta(2),\zeta(4),\cdots, \zeta(2m)\) 之间的关系式。
\]
仔细观察之后,这与前面的递推式是一样的,因此可以用前面的方法(数学归纳法或生成函数法)推出:
\]
留数法证明
留坑待填
参考资料
欧拉 · 《无穷小分析引论》
御坂01034 · 《巴塞尔问题的多种解法》
formulasearchengine · Weierstrass factorization theorem
黎曼函数ζ(2n)的几种求法的更多相关文章
- 「BJWC2018」Border 的四种求法
「BJWC2018」Border 的四种求法 题目描述 给一个小写字母字符串 \(S\) ,\(q\) 次询问每次给出 \(l,r\) ,求 \(s[l..r]\) 的 Border . \(1 \l ...
- LCS的几种求法
\(LCS:\) 对于两个长度均为 \(N\) 的数列 \(A\) 和 \(B\) ,存在一个数列 \(C\) 使得 \(C\) 既是 \(A\) 的子序列有事 \(B\) 的子序列,现在需要求这个数 ...
- 三维空间中xoy平面上特定抛物线的正等测投影解析解的一种求法
背景 背景:为锻炼代同学,老师给了她一个反向工程微信"跳一跳"小游戏的任务,希望做一个一样的出来.跳一跳中,有方块,有小人,小人站在方块上. 这个游戏的玩法是,用手指按住手机屏幕, ...
- 集合并卷积的三种求法(分治乘法,快速莫比乌斯变换(FMT),快速沃尔什变换(FWT))
也许更好的阅读体验 本文主要内容是对武汉市第二中学吕凯风同学的论文<集合幂级数的性质与应用及其快速算法>的理解 定义 集合幂级数 为了更方便的研究集合的卷积,引入集合幂级数的概念 集合幂级 ...
- [BJWC2018]Border 的四种求法(后缀自动机+链分治+线段树合并)
题目描述 给一个小写字母字符串 S ,q 次询问每次给出 l,r ,求 s[l..r] 的 Border . Border: 对于给定的串 s ,最大的 i 使得 s[1..i] = s[|s|-i+ ...
- 后缀数组的第X种求法
后缀自动机构造后缀数组. 因为有个SB题洛谷5115,它逼迫我学习后缀数组...(边分树合并是啥?). 一些定义:sa[i]表示字典序排第i的后缀是从哪里开始的.Rank[i]表示后缀i的排名.hei ...
- [BJWC2018]Border 的四种求法
description luogu 给一个小写字母字符串\(S\),\(q\)次询问每次给出\(l,r\),求\(s[l..r]\)的\(Border\). solution 我们考虑转化题面:给定\ ...
- 【LuoguP4482】[BJWC2018]Border 的四种求法
题目链接 题意 区间 boder \(n,q\leq 2*10^5\) Sol (暴力哈希/SA可以水过) 字符串区间询问问题,考虑用 \(SAM\) 解决. boder相当于是询问区间 \([l,r ...
- 洛谷P4482 [BJWC2018]Border 的四种求法 字符串,SAM,线段树合并,线段树,树链剖分,DSU on Tree
原文链接https://www.cnblogs.com/zhouzhendong/p/LuoguP4482.html 题意 给定一个字符串 S,有 q 次询问,每次给定两个数 L,R ,求 S[L.. ...
随机推荐
- Python 简明教程 --- 11,Python 元组
微信公众号:码农充电站pro 个人主页:https://codeshellme.github.io 软件工程的目标是控制复杂度,而不是增加复杂性. -- Dr. Pamela Zave 目录 我们在上 ...
- Docker(五)Docker镜像讲解
Docker镜像讲解 镜像概念 镜像是一种轻量级.可执行的独立软件包,用来打包软件运行环境和基于运行环境开发的软件,它包含运行某个软件所需的所有内容,包括代码.运行时.库.环境变量和配置文件 Dock ...
- Windows Defender might be impacting your build performance
由于换了SSD, 昨天安装了最新的 Idea 2019.2+ , 然后发现每次导入项目都有如下提示: 处理方法就是在Windows安全中心排除目录 处理方式参考: 官方 Known issues An ...
- 1166 - Unknown error 1166[mysql 错误
错误码 1166 原因 字段名因为是复制过来的, 末尾存在了一个空格换行
- Python之浅谈装饰器
目录 闭包函数 装饰器 迭代器 闭包函数 就是将原先需要调用好几遍的函数和参数写入一个包内,下次调用时一起调用 def name(x): x=1 def age(): print(x) return ...
- 你想了解的 HTTPS 都在这里
HTTP 协议仅仅制定了互联网传输的标准,简化了直接使用 TCP 协议进行通信的难度.有关 HTTP 协议相关的讲解请看前面两节: HTTP 协议详解 HTTP协议详解(二) less is more ...
- angular弹出对话框结构
angular dialog标准结构,注意有checkbox时,需要外包一层div,checkbox-wrapper类的这个样式控制了不显示滚动条.
- HTTPS 和 SSL/TLS 协议:密钥交换(密钥协商)算法及其原理
转自:https://blog.csdn.net/andylau00j/article/details/54583769 本系列的前一篇,咱们聊了“密钥交换的难点”以及“证书体系”的必要性.今天这篇来 ...
- Cache写策略(Cache一致性问题与骚操作)
写命中 写直达(Write Through) 信息会被同时写到cache的块和主存中.这样做虽然比较慢,但缺少代价小,不需要把整个块都写回主存.也不会发生一致性问题. 对于写直达,多出来%10向主存写 ...
- 利用Cython对python代码进行加密
利用Cython对python代码进行加密 Cython是属于PYTHON的超集,他首先会将PYTHON代码转化成C语言代码,然后通过c编译器生成可执行文件.优势:资源丰富,适合快速开发.翻译成C后速 ...