LINK:卡尔文球锦标赛

可以先思考一下合法的序列长什么样子.

可以发现后面的选手可以使用前面出现的编号也可以直接自己新建一个队.

其实有在任意时刻i 序列的mex>max.即要其前缀子序列中1~max的值都要出现过。

对于这种数排名的问题 容易想到是在某一位字典序小于要求的字典序 然后后面的随便放.

可以直接枚举这样的位置然后统计。最后可以统计出有多少个比当前要小的。

后续有一个 可以使用a 还有n个人这个样子的dp.总复杂度 \(n^3\) 期望得分50.

code
#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<ctime>
#include<cctype>
#include<queue>
#include<deque>
#include<stack>
#include<cstdlib>
#include<iomanip>
#include<algorithm>
#include<vector>
#include<list>
#include<bitset>
#include<utility>
#include<cmath>
#include<string>
#include<cstring>
#include<map>
#include<set>
#define mod 1000007
#define RE register
#define ll long long
#define putl(x) printf("%lld\n",x)
#define put(x) printf("%d\n",x)
#define put_(x) printf("%d ",x)
#define rep(p,n,i) for(int i=p;i<=n;++i)
#define fep(n,p,i) for(int i=n;i>=p;--i)
#define vep(p,n,i) for(int i=p;i<n;++i)
#define get(x) x=read()
using namespace std;
char *fs,*ft,buf[1<<15];
inline char gc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline int read()
{
RE int x=0,f=1;RE char ch=gc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=gc();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=gc();}
return x*f;
}
const int MAXN=10010;
int n;
int a[MAXN],f[MAXN],vis[MAXN];
int ans,cnt;
inline int add(int x,int y){return x+y>=mod?x+y-mod:x+y;}
inline int mul(int x,int y){return (ll)x*y%mod;}
inline int mus(int x,int y){return x-y<0?x-y+mod:x-y;}
inline int calc(int a,int n)
{
rep(1,cnt+n,i)f[i]=0;
f[cnt]=a;int ans=0;
rep(1,n,i)fep(cnt+n,cnt,j)f[j]=add(f[j-1],mul(j,f[j]));
rep(cnt,cnt+n,i)ans=add(ans,f[i]);return ans;
}
signed main()
{
//freopen("1.in","r",stdin);
get(n);int ans=0;
rep(1,n,i)get(a[i]);
rep(1,n,i)
{
if(a[i]>1)ans=add(ans,calc(a[i]-1,n-i));
if(!vis[a[i]])vis[a[i]]=1,++cnt;
}
put(ans+1);return 0;
}

考虑优化。

可以发现这个dp是无法进行优化了 插值还是矩阵乘法什么都不太行.

但是还是存在可以压缩的地方的 考虑两个位置 \(i,j\)dp到了第k位 尽管此时值不同但是可以用的数字是相同的 我们可以将其放在一起。

而且这也极像数位dp.

能用的数字的个数 更简单的方法为 最大值而不是上面代码中的cnt...

上面的压缩过程其实是把最大值相同的放在一起。

设\(f_{i,j,0/1}\)表示dp到了i这位的最大值为j是否存在最高位限制的方案数.

实际上 \(f_{i,j,1}\)这个可以直接省掉 因为可以的知在某一位的 有值且一定为1的只有一个地方。

转移不再赘述比较简单.

code
#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<ctime>
#include<cctype>
#include<queue>
#include<deque>
#include<stack>
#include<cstdlib>
#include<iomanip>
#include<algorithm>
#include<vector>
#include<list>
#include<bitset>
#include<utility>
#include<cmath>
#include<string>
#include<cstring>
#include<map>
#include<set>
#define mod 1000007
#define RE register
#define ll long long
#define putl(x) printf("%lld\n",x)
#define put(x) printf("%d\n",x)
#define put_(x) printf("%d ",x)
#define rep(p,n,i) for(int i=p;i<=n;++i)
#define fep(n,p,i) for(int i=n;i>=p;--i)
#define vep(p,n,i) for(int i=p;i<n;++i)
#define get(x) x=read()
using namespace std;
char *fs,*ft,buf[1<<15];
inline char gc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline int read()
{
RE int x=0,f=1;RE char ch=gc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=gc();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=gc();}
return x*f;
}
const int MAXN=10010;
int n,u;
int a[MAXN],b[MAXN];
int ans,cnt,mx;
int f[2][MAXN][2];
inline int add(int x,int y){return x+y>=mod?x+y-mod:x+y;}
inline int mul(int x,int y){return (ll)x*y%mod;}
inline int mus(int x,int y){return x-y<0?x-y+mod:x-y;}
int main()
{
//freopen("1.in","r",stdin);
get(n);get(a[1]);
if(n==1){puts("1");return 0;}
f[0][1][1]=1;
rep(2,n,i)
{
u^=1;get(a[i]);
fep(n,1,j)//枚举上一次的决策.
{
f[u][j][0]=f[u][j][1]=0;
if(f[u^1][j][0])
{
f[u][j][0]=add(f[u][j][0],mul(j,f[u^1][j][0]));
f[u][j+1][0]=add(f[u][j+1][0],f[u^1][j][0]);
}
if(f[u^1][j][1])
{
f[u][j][0]=add(f[u][j][0],mul(a[i]-1,f[u^1][j][1]));
if(a[i]==j+1)f[u][j+1][1]=add(f[u][j+1][1],f[u^1][j][1]);
else f[u][j][1]=add(f[u][j][1],f[u^1][j][1]);
}
}
}
rep(1,n,j)ans=add(ans,add(f[u][j][1],f[u][j][0]));
put(ans);return 0;
}

luogu P4798 [CEOI2015 Day1]卡尔文球锦标赛 dp 数位dp的更多相关文章

  1. [DP]数位DP总结

     数位DP总结 By Wine93 2013.7 1.学习链接 [数位DP] Step by Step   http://blog.csdn.net/dslovemz/article/details/ ...

  2. 数位dp模板 [dp][数位dp]

    现在才想到要学数位dp,我是不是很弱 答案是肯定的 以一道自己瞎掰的题为模板 //题: //输入数字n //从0枚举到n,计算这n+1个数中含有两位数a的数的个数 //如12930含有两位数93 #i ...

  3. 【xsy1611】 数位dp 数位dp

    这题是显然的数位$dp$,然而我居然写了一个下午!!! 我们不难想到差分,令$solve(x,y)$表示从第一个数字在区间$[0,x]$,第二个数字在区间$[0,y]$的答案. 不难发现题目中给了你一 ...

  4. Codeforces Round #235 (Div. 2) D. Roman and Numbers 状压dp+数位dp

    题目链接: http://codeforces.com/problemset/problem/401/D D. Roman and Numbers time limit per test4 secon ...

  5. hdu4352-XHXJ's LIS状压DP+数位DP

    (有任何问题欢迎留言或私聊 && 欢迎交流讨论哦 题意:传送门  原题目描述在最下面.  在区间内把整数看成一个阿拉伯数字的集合,此集合中最长严格上升子序列的长度为k的个数. 思路: ...

  6. luogu2657-Windy数题解--数位DP

    题目链接 https://www.luogu.org/problemnew/show/P2657 分析 第一道数位DP题,发现有点意思 DP求\([L,R]\)区间内的XXX个数,很套路地想到前缀和, ...

  7. 浅谈数位DP

    在了解数位dp之前,先来看一个问题: 例1.求a~b中不包含49的数的个数. 0 < a.b < 2*10^9 注意到n的数据范围非常大,暴力求解是不可能的,考虑dp,如果直接记录下数字, ...

  8. 数位dp 的简单入门

    时间紧张,就不讲那么详细了. 之前一直被深搜代码误解,以为数位dp 其实就是记忆化深搜...(虽说爆搜确实很舒服而且还好想) 但是后来发现数位dp 的标准格式其实是 预处理 + dp ...... 数 ...

  9. 【距离GDOI:141天】 滚入数位DP的坑

    作为博客园的第一篇...我都不知道要写什么了 ... 其实今天很没状态,就当吐槽吧... 嗯,被黄神带去写treap+可持久化线段树,然后在可持久化的删除上面跪了两天,真的是一跪不起.我已经连续多久没 ...

随机推荐

  1. Sass简单、快速上手_Sass快速入门学习笔记总结

    Sass是世界上最成熟.稳定和强大的专业级css扩展语言 ,除了Sass是css的一种预处理器语言,类似的语言还有Less,Stylus等. 这篇文章关于Sass快速入门学习笔记. 资源网站大全 ht ...

  2. URL编码与二次encodeURI

    转自:http://foryougeljh.iteye.com/blog/1456706 一般来说,URL只能使用英文字母.阿拉伯数字和某些标点符号,不能使用其他文字和符号.比如,世界上有英文字母的网 ...

  3. Mysql 常用语句实战(2)

    前置 sql 语句 用来创建表.插入数据 SET NAMES utf8mb4; SET FOREIGN_KEY_CHECKS = 0; -- ---------------------------- ...

  4. springbean 生命周期

    springbean 和java对象得区别: 1.对象:任何符合java语法规则实例化出来的对象 2.springbean: 是spring对普通对象进行了封装为BeanDefinition,bean ...

  5. day59 django初识

    目录 一.借助wsgiref模块实现简易版web框架 二.动静态页面 三.python三大主流web框架 四.启动一个django项目 1 启动前的注意事项 1.1 计算机的问题 1.2 django ...

  6. CSS(五)- 背景与边框 - 边框圆角与阴影基础用法

    扩展阅读 本文仅仅做border的基础使用,想要深入了解的话可以戳以下几个链接,觉得作者写的很好. CSS Backgrounds and Borders Module Level 3 CSS魔法堂: ...

  7. sass-loader安装+Failed to resolve loader: sass-loader You may need to install it.解决方法

    方式一: 通过 cnpm 安装node-sass cnpm install node-sass --save 方式二: 通过npm 安装 1.安装sass-loader npm install sas ...

  8. python 生成器(一):生成器基础(一)生成器函数

    前言 实现相同功能,但却符合 Python 习惯的方式是,用生成器函数代替SentenceIterator 类.示例 14-5 sentence_gen.py:使用生成器函数实现 Sentence 类 ...

  9. Django之 url组件

    本节内容 路由系统 models模型 admin views视图 template模板 路由系统 我们已知,用户从浏览器发出的请求会首先打到django url的路由分发系统这里,然后再到views视 ...

  10. 微信小程序wx.switchTab跳转到tab页面后onLoad里面的方法不执行

    相信大家在做小程序的时候启动页跳转到tab首页会用到switchTab 但是在跳转后发现页面模块不全,后面console.log()后发现是onLoad里面的方法不执行 解决这种问题的方法页有很多中, ...